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Abstract

Recent technological advances have enabled the detection and
detailed characterization of circulating tumor cells (CTC) and
circulating tumor DNA (ctDNA) in blood samples from patients
with cancer. Often referred to as a "liquid biopsy," CTCs and
ctDNA are expected to provide real-time monitoring of tumor

evolution and therapeutic efficacy, with the potential for
improved cancer diagnosis and treatment. In this review, we focus
on these opportunities as well as the challenges that should be
addressed so that these toolsmay eventually be implemented into
routine clinical care. Clin Cancer Res; 21(21); 4786–800. �2015 AACR.
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Introduction
Next-generation sequencing (NGS) studies performed in bulk

primary tumor specimens have demonstrated extensive interpa-
tient (1) and, more importantly, intrapatient (2) heterogeneity.
Recently, single-cell analyses of primary breast tumors have

provided higher-resolution evidence of intratumor heterogeneity
(3) with the finding of substantial clonal diversity and subclonal
heterogeneity, such that no two individual tumor cells are genet-
ically identical. Beyond spatial heterogeneity, solid tumors also
exhibit temporal heterogeneity, evolving over time under selec-
tion pressure from treatment (4, 5). Thus, there is an increased
appreciation that the management of metastatic disease should
rely on analysis of contemporary tumor tissue rather than on the
primary tumor diagnosed years ago (6).However, obtaining serial
samples of metastatic tissue is impractical and complicated by
spatial heterogeneity and sampling bias. Analysis of circulating
tumor cells (CTC) and circulating tumorDNA(ctDNA) thusholds
appeal and promise for noninvasive real-time assessment of
tumormolecular profiles during the course of disease. Evaluation
of CTCs and ctDNA may enable more sensitive monitoring of
treatment efficacy and thereby guide drug selection, even poten-
tially in the adjuvant setting where no such tools exist today.
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Table 1. CTC detection/capture methods with recently published clinical studies, 2010–2015

Enrichment methods and
devices Technology Comments Commercialized

Recent clinical
references

Affinity-based capture (CTC surface antibody)
Positive enrichment
CELLSEARCH (Janssen
Diagnostics)

EpCAM-coated ferrofluid
nanoparticles enrichment,
then IF for CK8, 18, 19; CD45;
DAPI

Only FDA-approved device for
patients with metastatic
breast, colorectal, and
prostate cancers

Yes (23, 24, 35)

Adnatest, Adnagen Antibody-coated magnetic
beads for enrichment, then
enriched cells tested by
multiplex RT-PCR gene panels

Analyzes gene expression in
enriched CTCs from patients
with breast, prostate, colon,
and ovarian cancers

Yes (43, 127, 128)

CTC-iChippos Combined bead andmicrofluidic
(inertial focusing) enrichment
(EpCAMþ mode)

Licensed by Janssen Diagnostics In progress—Janssen
Diagnostics

(129)

CytoTrack Sample spread on glass disc that
is rotated at high speed and
fluorescently scanned with a
laser beam

Similar recovery of rare cells as
CELLSEARCH

Yes (ref. 130—published
clinical data
pending)

Ephesia Magnetic particles
functionalized with EpCAM
antibodies are self-assembled
in a microfluidic platform

High capture specificity No (131)

GEDI Microfluidic geometrically
enhanced differential
immunocapture (GEDI) with
antibodies against specific
membrane antigens such as
PSMA or HER2

High capture efficiency and
purity from unprocessed
blood samples

In progress—Captura
Diagnostics

(132, 133)

GEM chip Geometrically enhanced mixing
(GEM) chip structure
increases interactions
between CTCs and the surface
of the antibody-coated chip

Appropriate for viable cell
capture and culture

No (134)

Graphene oxide–GO Chip Capture using functionalized
graphene oxide nanosheets
on a patterned gold surface

High capture yield, even for 3–5
spiked cells/mL

No (135)

HB-Chip Herringbone chip structure
increases interactions
between CTCs and the surface
of the antibody-coated chip
by chaotic mixing

Although group has developed
subsequent chips for CTC
capture, this one was used for
EMT studies in CTCs

No (82)

ImageStream (Amnis) Immunomagnetic sorting,
followed by flow cytometry
and fluorescence microscopy

Precision lower when evaluating
low number of CTCs, although
upgraded device available
that analyzes 5,000 cells/s

Yes (ref. 136—no
published clinical
data)

IsoFlux (Fluxion) Microfluidic platform combining
flow control and
immunomagnetic capture

Workflow for mutational
analysis of CTCs

Yes (137)

LiquidBiopsy (Cynvenio) Immunomagnetic capturewithin
a microfluidic chip

Direct automated DNA profiling Yes (ref. 138—no
published clinical
data)

MACS system (Miltenyi
Biotec)

Immunomagnetic CTC
enrichment—by antibodies
against cell surfacemarkers or
by an intracellular anti-pan
cytokeratin antibody

Does not identify CK-negative
CTCs but able to identify
EpCAM-negative CTCs with
other cell surface markers or
by CD45 depletion (negative
enrichment, below)

Yes (139, 140)

Magnetic sifter Flow-through fluidic array with
magnetic pore structure for
efficient separation of cells
labeled with magnetic
nanoparticles

Magnetically labeled target cells
captured at the pore edges
can then be released for
culture or lysed and placed on
a biosensor chip for
mutational analysis

No (141)

MagSweeper (Illumina) Immunomagnetic capture by
antibody against EpCAM or
other cell surface marker

First high-throughput single-cell
CTC transcriptional profiling
studies in breast cancer;
single-cell mutational analysis

Yes (8, 54, 58)

(Continued on the following page)
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Table 1. CTC detection/capture methods with recently published clinical studies, 2010–2015 (Cont'd )

Enrichment methods and
devices Technology Comments Commercialized

Recent clinical
references

in breast cancer, and single-
cell whole-exome sequencing
in prostate cancer

Modular CTC sinusoidal
microsystem (BioFluidica)

Three functional modules for
CTC selection, counting, and
phenotypic identification

Electrical sensor for counting
and determining viability

Yes (142)

OncoCEE (Biocept) In Cell Enrichment and
Extraction (CEE)
microchannel, CTCs enriched
with 10-antibody cocktail and
analyzed by ICC and/or FISH

Able to identify CK-positive and
-negative CTCs, HER2-
positive CTCs, and
determination of hormone
receptor status

Yes (14, 143)

Negative enrichment
CTC-iChipneg Deterministic lateral

displacement, inertial
focusing, and
magnetophoresis to rapidly
separate CTCs from WBCs
labeled with anti-CD45 and
anti-CD66b Abs

Licensed by Janssen Diagnostics In progress—Janssen
Diagnostics

(144)

Microfluidic cell concentrator
(MCC)

Method of concentrating pre-
enriched sample into a device
suitable for downstream CTC
analysis

Potential for CTC analysis in
multiple tumor types

No (145)

MACS system (Miltenyi
Biotec)

Immunomagnetic CTC-negative
enrichment by antibodies
against CD45

Yes (146)

Quadrupole magnetic
separator

Red cell lysis and
immunomagnetic CD45þ

depletion followed by IF
staining

Study demonstrating rare cell
heterogeneity

No (147)

RosetteSep CTC Enrichment
Cocktail; EasySep CD45
Depletion (STEMCELL
Technologies)

Immunodensity negative
selection cocktail for breast
and lung cancers. Also have
anti-CD45 immunodensity or
immunomagnetic depletion

Unwanted cells are targeted for
removal with Tetrameric
Antibody Complexes that
pellets with RBCs; also have
anti-CD45 beads

Yes (78, 148)

In vivo Ab-based capture
CellCollector (GILUPI) EpCAM-coated wire placed

intravenously
In vivo detection, large blood
volume screened

Yes (149)

Label-free capture (size-based)
Size-based microfiltration
CellSieve (Creatv MicroTech) Filter-based enrichment High capture efficiency Yes (90, 150)
ISET (Rarecells) Filter-based enrichment Detection of ALK

rearrangements on CTCs for
monitoring treatment with
crizotinib

Yes (52, 151, 152)

Parylene filter (Circulogix) Filter-based enrichment Viable CTC capture using a 3D
device

Yes (153, 154)

ScreenCell (ScreenCell) Filter-based enrichment Allows downstream phenotypic
analysis and cell culture

Yes (155)

Microfluidic devices
ClearCell FX (Clearbridge
BioMedics)

Size-based separation based on
Dean Flow Fractionation
(inertial focusing)

Viable CTCs for downstream
analysis or culture

Yes (70, 156)

Cluster-Chip Multiple rows of shifted
triangular pillars; low shear
stress

Single-cells pass through;
clusters contain quiescent and
proliferating cells as well as
other cell types

No (85)

Vortex Combined use of microscale
vortices and inertial focusing

Viable CTC isolation with high
purity (>50%)

Yes (157)

Label-free separation based on biophysical properties
ApoStream (ApoCell) Continuous flow

Dielectrophoretic Field-Flow
Fractionation (DEP-FFF)

Detection independent of
EpCAM expression; useful for
viability analysis and culture

Yes (158)

DEPArray (Silicon
Biosystems)

Moving dielectrophoretic cages Isolation of single pure CTCs for
dowstream analysis

Yes (51, 56, 159)

(Continued on the following page)
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Circulating Tumor Cells
CTCs can be found in the bloodstream of patients with cancer

as single cells or, less commonly, as cell clusters, and CTC levels
have been shown to have clinical associations with survival and
response to therapy (7). CTCs are presumptively shed into the
vasculature from primary tumor or distant metastatic foci and are
postulated to contain subpopulations of "culprit cells," which are
responsible for seeding and reseeding metastases, eventually
leading to patient demise (8). It is thus appealing to not only
enumerate CTCs for measuring disease burden and detection of
minimal residual disease but also to characterize CTCs as ameans
to target therapy to these putative culprit cells.

CTC enrichment and detection technologies
Several reviews have discussed the various CTC enrichment and

detection technologies (7, 9–12). Table 1 presents an updated list
ofCTCassays thathavebeenused to test patient sampleswithin the
past 5 years, along with their commercialization status. CTC
detection or capture methods can be broadly categorized as either
label dependent, using positive enrichment with cell surface mar-
kers such as epithelial cell adhesionmolecule (EPCAM), also used
in in vivo capture techniques, or label independent, enriching for
CTCs based on negative selection, size, or other biophysical
properties; other strategies include direct imaging of CTCs and
functional assays. A significant issue in detecting and capturing
CTCs by label-dependent methods is the lack of reliable immu-
nocytochemically identifiable markers that distinguish them from
normal epithelial cells. As such, because epithelial cells are rarely
present in blood samples from healthy individuals and because
circulating epithelial cells (CEC) in patients with cancer often carry

the same genetic aberrations seen in the primary tumor (13), the
common definition of CTCs has been equivalent to that of CECs:
nucleated cells in the bloodstream that express epithelial cytoker-
atins anddonot express thewhite blood cell surface antigenCD45.
More recently, cytokeratin-negative CTCs have been identified,
potentially representing tumor cells undergoing epithelial–mes-
enchymal transition (EMT), or alternatively, cancer stem cells that
have not yet shown epithelial differentiation (14–17).

CTCs in clinical trials
Some technologies listed in Table 1 may detect distinct CTC

subpopulations and therefore could be used in different clinical
scenarios in the future. However, for any technology to be used in
the clinic, demonstration of analytic validity (the accuracy of the
test tomeasure the target of interest), clinical validity (the value of
the test to predict the clinical outcome), and ultimately clinical
utility (ability of the test to lead to improved clinical outcome
when treatment choice is informed by test results) is required
(9, 18). The only system currently approved by the FDA as an
aid in monitoring patients with metastatic breast, colorectal,
or prostate cancer is CELLSEARCH (Janssen Diagnostics; refs.
19–21). Recent data suggest that this technology can also be used
for clinical trials acrossmultiple laboratories in the nonmetastatic
setting provided that continuous training and central image
review is performed (22).

In April 2015, a search in the "ClinicalTrials.gov" website using
the keywords "circulating tumor cell" revealed 296 studies involv-
ing CTCs. Table 2 refers to studies in multiple tumor types
using CTC enumeration or characterization as an inclusion
criterion. Table 3 refers to studies for the development and/or
validation of CTC assays for a particular indication.

Table 1. CTC detection/capture methods with recently published clinical studies, 2010–2015 (Cont'd )

Enrichment methods and
devices Technology Comments Commercialized

Recent clinical
references

Direct imaging
Epic (Epic Sciences) RBC lysis and IF for CK, CD45,

and DAPI, or other markers,
then high-definition imaging

Unbiased screen of all blood
nucleated cells for detection
of individual CTCs and clusters

Yes (16)

FASTcell (SRI) Fiber optic array scanning
technology (FAST)

Enables the simultaneous
detection of multiple tumor-
specific biomarkers in a
multiplexed fashion

Yes (160)

AccuCyte–CyteFinder
(RareCyte)

Density-based cell separation
and automated imaging with
optional single-cell picking

Dual technology platform that
facilitates single-cell analysis

Yes (161)

OncoQuick (Grenier Bio-One) 50-mL centrifugation tube with
porous barrier on top of a
proprietary separation
medium for CTC enrichment
by density centrifugation and
washing

CTCs have lighter buoyant
density than WBCs and RBCs,
which migrate through the
porous barrier, whereas CTCs
remain at plasma interface

Yes (162)

Functional assays
EPISOT CD45 depletion and short-term

culture. IF for different
markers.

Detection based on protein
secretion

No (163)

Vita-Assay (Vitatex) Density gradient centrifugation
then cells applied to collagen
adhesion matrix (CAM)

Detection based on invasion
properties

Yes (164)

In vivo detection
PAFC Photoacoustic flow cytometry Increased sensitivity by

examination of the entire
blood volume in vivo

No (ref. 165—preclinical
models)

Abbreviations: CK, cytokeratin; DAPI, 40 ,6-diamidino-2-phenylindole; ICC, immunocytochemistry; IF, immunofluorescence; RBCs, red blood cells; WBCs, white blood cells.
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CTC enumeration
A recent pooled analysis provided level-one evidence for the

clinical validity of elevated CTC levels as a marker of poor
prognosis in metastatic breast cancer (23). However, the value
of CTC enumeration for treatment decision making in metastatic
breast cancer was prospectively tested in the Southwest Oncology
Group (SWOG) S0500 clinical trial (24). The SWOG trial eval-
uated the benefit of an early change in chemotherapy for patients
with persistently increased CTCs at first follow-up after starting
first-line chemotherapy. Of 595 evaluable patients, 123 patients
with persistently elevated CTCs on day 21 of therapy were ran-
domized to either continue the same treatment or to switch to an

alternative chemotherapy of physician's choice. In this trial, an
early switch to an alternative chemotherapy did not increase
overall survival (OS). Although CTCs were strongly prognostic,
the absence of a survival benefit from changing treatment based
on elevated CTC counts suggests that earlier detection of relapse
can only be important when a more effective treatment is avail-
able: Switching fromone ineffective therapy to another ineffective
therapy does not change outcome. Instead, changing treatment
based on CTCmolecular characterization might be a more prom-
ising approach to test.

In nonmetastatic breast cancer, detection of elevatedCTC levels
using CELLSEARCH and other platforms (25–29) is also

Table 2. Ongoing studies that have CTC detection or characterization as inclusion criterion

Trial Inclusion criteria
Estimated
enrollment Study design Primary endpoint

CirCe01 NCT01349842
Phase III (randomized)

MBC, starting third-line chemotherapy,
CTCs positive

568 Early change of CT based onCTCs vs.
based on clinical and radiologic
criteria

OS

STIC-CTC NCT01710605
Phase III (randomized)

MBC, HR-positive, HER2-negative PT,
starting first-line treatment,
available CTC results

1,000 Physician vs. CTCs-driven choice for
first-line treatment (ET vs. CT)

PFS, economic
evaluation

DETECT-III NCT01619111
Phase III (randomized)

MBC, HER2-negative PT,�1 CTC HER2-
positive/7.5 mL

120 (ET or CT) � lapatinib CTC clearance rate

Treat-CTC NCT01548677
Phase II (randomized)

EBC, HER2-negative PT,�1 CTC/15 mL
after (neo)adjuvant chemotherapy
and breast surgery

174 Adjuvant trastuzumab� 6 cycles vs.
observation

CTC detection
(week 18)

DETECT-IV NCT02035813
Phase II (2 cohorts)

MBC, HER2-negative PT�1 CTC HER2-
negative/7.5 mL

520 Everolimus þ ET eribulin PFS

NCT01975142 Phase II (single
arm)

MBC, HER2-negative PT, CTC HER2-
amplified

480 Trastuzumab emtansine (T-DM1) Tumor RR

VISNU-1 NCT01640405
Phase III (randomized)

MCRC, KRAS wild-type, no treatment
for MCRC, >3 CTCs/7.5 mL

350 FOLFOX6 þ bevacizumab vs.
FOLFOXIRI þ bevacizumab

PFS

VISNU-2 NCT01640444
Phase II (randomized)

MCRC, KRAS wild-type, no treatment
for MCRC, <3 CTCs/7.5 mL

240 FOLFIRI þ bevacizumab vs.
FOLFIRI þ cetuximab

PFS

NOTE: All the studies shown in this table use CELLSEARCH technology for CTC detection and/or characterization.
Abbreviations: EBC, early breast cancer; ET, endocrine treatment; FOLFIRI, chemotherapy regimen including fluorouracil, leucovorin, and irinotecan; FOLFOX6,
chemotherapy regimen including fluorouracil, leucovorin, and oxaliplatin; FOLFOXIRI, chemotherapy regimen including fluorouracil, leucovorin, oxaliplatin, and
irinotecan; HR, hormone receptor; MBC, metastatic breast cancer; MCRC, metastatic colorectal cancer; PFS, progression free survival; PT, primary tumor; RR,
response rate.

Table 3. Studies for the development and/or validation of CTC assays for a particular indication

Trial Disease Inclusion criteria
Estimated
enrollment Technology Objective of CTC assay

COMETI Phase II MBC ER-positive/HER2-negative PT 200 CELLSEARCH To identify patients with rapid
progression (within 3mo) to a new line
of ET

NCT01701050 Progression after at least one
line of ET

NCT01660776 MBC Untreated patients 325 Multiparameter flow
cytometry

Todescribe of blood cell types producing
soluble PD-L1NCSLC

CELLSEARCHHL
DLBCL

NCT01830426 NSCLC Suspected lung cancer 429 EPIC Sciences To test CTC assay as a surrogate for
diagnosis in suspected lung cancer

NCT02372448 NSCLC Stage IIIb/IV nonsquamous
NSCLC ALK rearrangement
result by FISH analysis (gold
standard method) on tumor
tissue

224 ISET To validate CTC as alternative to tumor
tissue for ALK analysis

NCT01558349 Melanoma Stage 4 melanoma 82 EPISPOT,
CELLSEARCH

To detect circulating melanoma cells

Abbreviations: ALK, anaplastic lymphoma kinase; DLBCL, diffuse large B-cell lymphoma; ER, estrogen receptor; ET, endocrine treatment; HL, Hodgkin lymphoma;
HNSCC, head and neck squamous cell carcinoma; MBC, metastatic breast cancer; NSCLC, non–small cell lung cancer; PD-L1, programmed death-ligand 1; PT, primary
tumor.
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associated with adverse prognosis. The ongoing Treat CTC trial
(NCT01548677; Table 2) is assessing CTC dynamics as an early
signal of drug activity. This trial enrollswomenwith primary high-
risk HER2-nonamplified breast cancer who have detectable CTCs
after completing surgery and (neo)adjuvant chemotherapy. It
evaluates whether six cycles of trastuzumab (a humanizedmono-
clonal antibody targeting the HER2 growth factor receptor) com-
pared with observation alone will eliminate the persistent CTCs.
This trial was based on several lines of evidence: (i) in preclinical
models, trastuzumab appears to target the cancer stem cell pop-
ulation in aprocess that does not requireHER2 gene amplification
(30); (ii) subset analyses of prospective trials demonstrate similar
trastuzumab benefit for women with HER2-positive tumors by
local testing but deemed HER2-negative by central pathology
review (31, 32); and (iii) a single-center randomized phase II
study of 75 patients withHER2-negative early breast cancer found
that short-course trastuzumab can eliminate chemotherapy-resis-
tant CK19 mRNA-positive CTCs and improve patient outcome
compared with observation (33). Additional studies using CTCs
in breast cancer are listed in Tables 2 and 3.

CTC enumeration has also been shown to provide prognostic
information in metastatic castration-resistant prostate cancer
(34, 35). In the COU-AA-301 registration trial that compared
abiraterone plus prednisone with prednisone alone, the combi-
nation of CTC enumeration and lactate dehydrogenase (LDH)
levels at 12 weeks posttreatment was shown to be a surrogate for
OS at the individual patient level (36). Efforts are ongoing to
validate this biomarker panel.

Clinical studies using CTCs in tumor types other than breast
and prostate cancer are described in Tables 2 and 3.

CTC characterization
Protein expression in CTCs. Beyond CTC enumeration, character-
ization of protein expression on CTCs has also been used to guide
treatment selection in clinical trials (Table 2). In breast cancer,
HER2 protein expression on CTCs has been assessed using the
CELLSEARCH technology, with demonstration that somewomen
with HER2-negative breast cancer may have detectable HER2-
positive CTCs (37, 38). However, a phase II study of single-agent
lapatinib (an anti-HER2 tyrosine kinase inhibitor) did not find
objective responses in patients with metastatic breast cancer with
HER2-negative primary tumors and HER2-positive CTCs at study
entry (39). Of 139 screened HER2-negative patients, only 96
(69%) had �2 CTCs, and only 7 (5%) had�50% HER2-positive
CTCs and received treatment. One patient (1 of 139 screened
patients) had durable disease stabilization, having received lapa-
tinib as a third line of therapy, although efficacy analysis could not
be done due to the low number of treated patients. Of note, of the
7 treated patients, the 6 who progressed received lapatinib as
�fourth line therapy for advanced disease, raising the question of
whether HER2 status of CTCs represents HER2 status of the bulk
of metastases in very late-stage disease. An ongoing phase III trial
(DETECT III, NCT01619111) is evaluating the role of adding
lapatinib to chemotherapy in this same patient population (Table
2). Other investigators are using CELLSEARCH to monitor endo-
crine resistance in ER-positive HER2-negative metastatic breast
cancer. To that end, a score based on CTC enumeration and
characterization for estrogen receptor (ER), Bcl-2, HER2, and
Ki67, the CTC-Endocrine Therapy Index (CTC-ETI; ref. 40), is
currently being tested in the COMETI Phase II study
(NCT01701050; Table 3).

CTC protein expression has also been characterized in other
tumor types. In patients with metastatic colorectal cancer, thymi-
dylate synthase expression inCTCs has been studied as a potential
marker of resistance to 5-fluorouracil (41). Immunofluorescent
markers have beenused to study androgen receptor (AR) signaling
in CTCs from patients with metastatic prostate cancer to tailor
hormonal treatment approaches (42).

RNA expression in CTCs. An emerging area of investigation is
transcriptional profiling of CTCs to help guide real-time drug
selection. For example, a postulated reason that patients with
castration-resistant prostate cancer (CRPC) may not respond to
drugs that inhibit or impair AR signaling may be the presence of
AR splice variants within their tumor cells. This was demonstrated
by examining mRNA from CTCs collected prospectively from
patients with metastatic CRPC who were enrolled in a clinical
trial of abiraterone or enzalutamide treatment. When CTCmRNA
was assayed for the splice variant AR-V7, a constitutively active
isoformof the AR that lacks the ligand-binding domain, there was
a significant associationwith therapeutic resistance to abiraterone
and enzalutamide, drugs that indirectly (abiraterone) or directly
(enzulatamide) target the AR, where this ligand-binding domain
is present (43).

However, an important challenge with RNA expression anal-
ysis of CTC-enriched cell fractions is the potentially confound-
ing signal from contaminating leukocytes. To address this chal-
lenge, multiplex PCR with CTC-specific mRNAs (44–46) and
single-cell approaches are being explored. High-dimensional
single-cell transcriptional profiling of CTCs purified using the
MagSweeper, an immunomagnetic enrichment technology
(47), revealed significant CTC heterogeneity, even within the
same blood draw, suggesting a need for multidrug therapy to
approach tumormolecular diversity (8). Importantly, CTCs also
showed markedly different gene expression profiles compared
with those in single cells from breast cancer cell lines, suggesting
that CTC analysis might complement cell-line analysis in drug
development. Similarly, prostate cancer also appears to be
characterized by CTC heterogeneity, with distinct differences in
single-cell expression of EMT-related genes between CTCs from
castration-sensitive and castrate-resistant cancers (48).

DNA aberrations in CTCs. Several proof-of-concept studies have
demonstrated the feasibility of detecting specific somatic muta-
tions or other genetic alterations in pooled or single CTCs from
patients with various tumor types (49–54). Moreover, nontar-
geted approaches are now being used to analyze whole-genome
copy number aberrations in single CTCs by array comparative
genomic hybridization (aCGH) and NGS techniques (55–57),
including whole-exome sequencing of single CTCs (58).

A challenge when analyzing single CTCs using Sanger or NGS
methods is to exclude false-positive and false-negative findings
due to biases introduced by whole-genome amplification.
Moreover, it remains unclear how many CTCs need to be
analyzed to capture tumor heterogeneity sufficiently to predict
treatment efficacy.

CTC in vitro and in vivo models for drug response
CTCs from patients have been propagated in vitro by multiple

groups. These include short-term cultures (28 days or less) of
CTCs frompatientswith breast, colorectal, pleuralmesothelioma,
prostate, urothelial, bladder, esophageal, pancreatic, gastric, and

CTCs and ctDNA: Path to Clinical Utility
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lung cancers (59–70) and long-term cultures (6–24 months) of
CTCs from patients with breast, prostate, and colorectal cancer
(71–74). The purpose of such model systems would be to study
drug response or, in one study, to identify multilayer clusters,
which if they appear in culture by day 14, may be an early
predictor of therapy resistance (70).

Several recent studies have reported the development ofmouse
xenografts generated directly from CTCs or from CTC cultures
from patients with advanced breast, colorectal, prostate, hepato-
cellular, small cell lung, and gastric cancers (68, 72, 74–79). Some
of these assays explore metastatic subpopulations of CTCs and
others generate patient-specific models for guiding treatment.

In a xenograft assay of luminal breast cancer CTCs, it was
demonstrated that, in contrast to bulk EPCAMþ CTCs, an
EPCAMþCD44þCD47þMETþ CTC subpopulation is highly
enriched for metastasis-initiating cells when injected into the
bone marrow of immunocompromised mice (75). In another
study, a subset of EpCAM-negative CTCs taken from the periph-
eral blood of patients with breast cancer (EpCAM�/ALDH1þ/
CD45�) was grown in vitro. While all EpCAM-negative CTCs
grown in culture caused lung metastases after tail vein or intra-
cardiac injection, only cells enriched for a "brain metastasis
selected marker (BMSM) signature," HER2þ/EGFRþ/HPSEþ/
Notch1þ, showed increased potential for both lung and brain
metastasis (71).

CTCs enriched from the blood of patients with small cell lung
cancer have been implanted subcutaneously into immunocom-
promised mice as CTC-derived explants (CDX). The CTCs were
tumorigenic when there were greater than 400 CTCs in 7.5 mL of
blood; generated CDX not only showed similar genomic profiles
to those from the patients' CTCs but accurately reflected the donor
patient's response to cisplatin/etoposide chemotherapy (78).
Xenografts derived from CTC cell lines can also be used to test
the efficacy of different drug combinations (68, 72). Such studies
open exciting possibilities for the use of CTC genotyping and
functional testing to identify rational drug combinations for
clinical evaluation.

Potential limitations, however, of in vitro and in vivomodels are
that they are usually generated from highly aggressive tumor
subclones that may not accurately reflect the spectrum of tumor
cell heterogeneity, and, perhaps more importantly in the current
era of burgeoning cancer immunotherapy, in vivo xenograft mod-
els do not recapitulate tumor–host interactions that may play a
role in drug resistance. Additional work is required to optimize
experimental conditions for efficient generation of these models
from the majority of patients with metastatic cancer and to
demonstrate that results from these models accurately reflect
outcomes in the clinical setting.

CTCs and propensity for metastatic colonization
A variety of mesenchymal markers have been identified in

CTCs, suggesting an EMT phenotype (8, 80–82) that may con-
tribute to metastatic progression. Plastin3 (encoded by PLS3
gene), an actin-binding/bundling protein, has been identified in
tumors and CTCs of patients with primary and metastatic colo-
rectal cancer, with higher expression in advanced and metastatic
tumors; CTCs that express plastin 3 show an EMT phenotype and
are associated with poor prognosis (83).

Although the majority of CTCs are single, CTC clusters have
also been identified in blood samples from patients with meta-
static cancer. Also known as circulating tumor microemboli,

clusters immunomagnetically captured usng the CELLSEARCH
platform have been identified in more than 30% of patients with
small cell lung cancer and appear to lack apoptotic or proliferating
cells, perhaps offering a survival advantage (84). The use of a new
device, the Cluster-Chip, offers label-free isolation of CTC clusters
with the use of triangular pillars acting as microfluidic "cluster
traps" (85). This method showed that clusters were identified in
30% to 40% of patients withmetastatic melanoma, breast cancer,
and prostate cancer, with the majority of clusters containing 2 to
10 cells, although sometimes up to 19 cells. However, in contrast
to CTC clusters isolated by CELLSEARCH in metastatic small cell
lung cancer, about half the CTCs within clusters isolated by the
Cluster-Chip in metastatic breast cancer were proliferating.

Similar to single migratory mesenchymal-like CTCs, CTC clus-
ters appear to be enriched for mesenchymalmarkers (82, 86). It is
postulated that CTC clusters may arise from oligoclonal tumor
cell groupswithhighmetastatic potential and that EMT in theCTC
clusters may be mediated through TGFb signaling by platelets
attached to these clusters (refs. 82, 87, 88 ; Fig. 1).

Beyond CTCs, an increasing interest has been expressed in the
role of circulating stromal cells and macrophages in metastatic
progression. In mouse models, tumor cells entering the circula-
tion together with primary tumor-derived stromal cells have a
survival advantage compared with single CTCs and are more
efficient in forming lung metastases (89). Similarly, circulating
cancer-associated macrophage-like cells from patients with met-
astatic breast, prostate, and pancreatic cancers can disseminate
into the circulation and interact with CTCs (90), with some
observed to migrate bound to CTCs, potentially facilitating dis-
tant colonization and neovascularization. CTC clusters may
express markers associated with platelet transcripts and/or tis-
sue-derived macrophages, but not T/B/natural killer (NK) cells
(85). Refinements in our ability to interrogate CTCs and associ-
ated cells may enablemore rapid clinical development of targeted
agents that can affect the metastatic cascade.

ctDNA
Considerations for sensitive detection of ctDNA

First recognized more than 20 years ago (91), plasma ctDNA
species are identifiable by the presence of pathognomonic or
previously characterized molecular alterations in corresponding
tumor tissue (i.e., single nucleotide, copy number, structural, and
methylation variants) and thus afford tremendous specificity
(92–94). Recent advances in our understanding of the biologic
properties and clinical associations of ctDNA, as well as the
analytic platforms for its detection, have provided evidence that
this class of biomarker may also enable a level of sensitivity
suitable for noninvasive tumor monitoring.

As with CTCs, proposed clinical applications of ctDNA segre-
gate broadly into two categories: profiling, noninvasive charac-
terization of tumor molecular features, and quantitation, where
ctDNA levels serve as a surrogate of tumor burden (92). For both
categories, clinical utility will depend on reliable detection of
ctDNA when it is present (analytic sensitivity), as well as the
proportion of patients for whom ctDNA should be detectable
(clinical sensitivity). Although ctDNA can be detected across
several tumor types and generally correlates with tumor stage,
absolute ctDNA levels vary widely within each subpopulation
(95). Detection of ctDNA is further challenged by the high
background levels of circulating wild-type DNA observed in
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individuals with and without cancer (96). In early-stage disease
(but also in some metastatic cases), ctDNA may represent an
exceedingly rare subpopulation within total cell-free DNA, at
levels corresponding to one genome equivalent in 5mL of plasma
(�0.01% allele fraction), and may be undetectable in plasma
volumes typically sampled (95, 97, 98). Although incompletely
understood, ctDNA levels may vary according to tumor burden,
anatomic proximity to vasculature, and biologic features, includ-
ing apoptotic rate and metastatic potential.

Given a low signal-to-noise ratio, ctDNA detection methods
must account for multiple sources of variability to have the
robustness desired for clinical use. Analytic variability can arise
from inefficient ctDNA recovery during sample preparation,
intrinsic error rates for PCR and sequencing which exceed the
lower range of ctDNA abundance, and biases in enrichment of
genomic regions for analysis (97). Preanalytic variability can
affect levels of background wild-type DNA due to lysis of
white blood cells during plasma preparation (99), which has
prompted development of standardized protocols incorporat-
ing use of specialized preservative-containing tubes (e.g., Streck
Cell-Free DNA BCT; ref. 100). Detection methods should also
accommodate the presence of ctDNA predominantly as 160- to
180-bp fragments, consistent with the nucleosomal pattern of
DNA fragmentation arising from tumor cell apoptosis, the rate
of which is likely to be the key driver of ctDNA levels; however,
it has been shown that a high portion of ctDNA fragments are
<100 bp and that optimal detection would then require the use
of primers that target amplicons <100 bp (60 bp may be best;
refs. 101–103).

The most challenging source of variability, however, comes
from tumor heterogeneity. As previously discussed, tumors are
characterized by marked spatial heterogeneity resulting from
clonal evolution of cells harboring tumor-initiating molecular
alterations (the "trunk") to subclones with additional mutations

(the "branches"; ref. 4). If a "branch"mutation is selected to detect
ctDNA, an absent or low-level signalmay not accurately represent
the overall level of ctDNA, with potential implications for clinical
utility. As an example, a low level of circulating KRAS-mutant
DNA in a patient with metastatic colorectal cancer could have a
concordant result in tissue but could alternatively represent a rare
subclone that would not have been detected by conventional
tissue KRAS testing. Withholding anti-EGFR therapy for this
patient might be appropriate in the former case but would be
controversial in the latter. Moreover, for applications in which
ctDNA is assessed longitudinally, an added challenge will be
temporal heterogeneity, whereby tumormolecular profiles evolve
with emergence and disappearance of dominant subclones due to
the selective pressure of treatment (104–106). For broad appli-
cability, ctDNA detection platforms should not only have high
analytic sensitivity but also sufficient genomic coverage to identify
a tumor with multiple molecular markers (for redundancy and
inclusion of "trunk" mutations) and to anticipate molecular
alterations expected with tumor evolution.

Several methods have been developed to detect ctDNA, with
the predominant platforms at present based on digital PCR and
NGS. Comparisons of clinical sensitivity across studies are chal-
lenging due to variability in methods, the number and type of
targeted molecular alterations, tumor type, tumor stage, and
preselection of patients (Table 4). With the notable exception of
the studies by Bettegowda and colleagues (95) andDouillard and
colleagues (107), published studies have been limited by small
sample sizes. Nevertheless, a number of themes emerge. First,
PCR-based approaches have very high sensitivity for ctDNA but
are limited in the number of foci that can be assessed and,
consequently, the addressable proportion of each population
(compare the tested populations and the populations evaluable
for sensitivity; Table 4). This limitation can be addressed by first
identifying patient-specific molecular alterations in tumor tissue

© 2015 American Association for Cancer Research
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Table 4. Selected studies of ctDNA detection in various tumor types

Study reference
Analytic platform
for ctDNA

Molecular
alteration

Number of patients
analyzed for ctDNA Tumor type Stage

Sensitivity (patients with
detected ctDNA/patients
with marker-positive
tumors)a

Lecomte 2002 (117) Allele-specific PCR,
methylation-specific
PCR

SNV (KRAS) or
methylation (p16)

39 (preselected) Colorectal I 1/3 (33%)
II 10/13 (77%)
III 6/9 (67%)
IV 9/12 (75%)

Diehl 2008 (108) BEAMing SNV (custom
assays)

18 Colorectal II 1/1 (100%)
III 1/1 (100%)
IV 16/16 (100%)

Board 2010 (114) Allele-specific PCR SNV (PIK3CA) 77 Breast Operable 0/14 (0%)
IV 8/10 (80%)

Forshew 2012 (111) Digital PCR, tagged
amplicon sequencing

SNV (TP53, PTEN,
KRAS, BRAF,
PIK3CA, EGFR)

37 Ovarian III, IV 21/37 (57%)

Leary 2012 (118) Paired-end sequencing Structural variants 10 Breast IV 3/3 (100%)
Colorectal IV 7/7 (100%)

Punnoose 2012 (120) TaqMan PCR SNV (KRAS, BRAF,
PIK3CA, EGFR)

25 NSCLC IV 7/8 (88%)

Higgins 2012 (105) BEAMing SNV 49 Breast IV 14/14 (100%)
Narayan 2012 (113) Amplicon sequencing SNV (KRAS, BRAF,

EGFR)
30 NSCLC III 1/1 (100%)

IV 4/4 (100%)
Chan 2013 (166) Bisulfite sequencing CNV, methylation 46 Hepatocellular BCLC A 24/26 (92%)

Breast Localized/IV 5/5 (100%)
Neuroendocrine IV 1/1 (100%)
Sarcoma IV 1/1 (100%)
NSCLC III/IV 4/4 (100%)
Nasopharyngeal localized/IV 6/9 (67%)

Dawson 2013 (115) Digital PCR, tagged
amplicon sequencing

SNV 30 Breast IV 29/30 (97%)

Beaver 2014 (98) Digital PCR SNV (PIK3CA) 29 Breast I 8/9 (89%)
II 5/5 (100%)

Bettegowda 2014 (95) BEAMing, tagged
amplicon sequencing,
PCR ligation

SNV, structural
variants

640 Bladder Localized 4/7 (57%)
IV 3/3 (100%)

Breast Localized 10/19 (53%)
IV 12/14 (86%)

Colorectal Localized 31/40 (78%)
IV (Set 1) 24/24 (100%)
IV (Set 2) 68/78 (87%)

Endometrial Localized 3/11 (27%)
IV 1/1 (100%)

Gastroesophageal Localized 8/14 (57%)
IV 7/7 (100%)

Glioma n/a 2/27 (7%)
Head and neck Localized 2/2 (100%)

IV 7/10 (70%)
Hepatocellular localized 2/3 (67%)

IV 1/1 (100%)
Medulloblastoma n/a 6/14 (43%)
Melanoma Localized 0/2 (0%)

IV 15/18 (83%)
Neuroblastoma IV 6/9 (67%)
NSCLC IV 4/5 (80%)
Ovarian Localized 8/9 (89%)
Pancreatic Localized 60/121 (50%)

IV 30/34 (88%)
Prostate IV 2/5 (40%)
Renal cell IV 2/5 (40%)
SCLC IV 1/1 (100%)
Thyroid IV 1/4 (25%)

Bidard 2013 (167) PCR SNV (GNAQ/GNA11) 26 (preselected) Uveal melanoma IV 22/26 (84%)
Madic 2015 (116) Amplicon sequencing SNV (TP53) 40 Breast (TNBC) IV 21/26 (81%)
Roth�e 2014 (112) Amplicon sequencing SNV (50 cancer

genes)
17 Breast IV 9/11 (82%)

(Continued on the following page)
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and then developing customized ctDNA assays [e.g., PCR
assays for single-nucleotide variants (SNV; refs. 95, 108) or
structural variants (personalized analysis of rearranged ends,
PARE (ref. 109)]. However, this approach may be limited by
practicality and cost considerations. Second, newer sequenc-
ing-based platforms that account for sequencing error rate and
PCR errors during library preparation [e.g. SafeSeq (ref. 110),
TAm-Seq (ref. 111), CAPP-Seq (ref. 97), Ampli-Seq (ref. 112,
the first published study to demonstrate the feasibility of
performing deep-coverage NGS in breast cancer for the detec-
tion of mutations in hot spot regions of 50 genes in an ISO-
certified laboratory), and others (113)] are achieving analytic
sensitivities on par with PCR while maintaining broader geno-
mic coverage. Finally, ctDNA detection with state-of-the-art
techniques remains consistently lower for early-stage disease
than for metastatic disease.

Establishing clinical utility of ctDNA
Applications based on ctDNA for noninvasive molecular profiling.
Thefirst area inwhich ctDNAwill be proven to have clinical utility
is in noninvasive profiling for the presence of actionable muta-
tions. Several studies have now demonstrated high concordance
for selected actionable mutations between paired tumor and
plasma specimens, particularly for metastatic disease in breast
(95, 105, 112, 114–116), colorectal (95, 108, 117–119), and
non–small cell lung cancer (refs. 97, 113, 120; Table 4). Larger,
prospective studieswith standardized analyticmethods should be
conducted to validate concordance in each tumor type, enabling a
more precise understanding of false-negative and false-positive
rates. For metastatic disease patients who have tumors that are
difficult to biopsy, who have contraindications to biopsy, or who
have tumors that are traditionally challenging to diagnose by
conventional means (e.g., cholangiocarcinoma), a validated
ctDNA assay could have clinical utility in the near term as an
"alternative to tissue biopsy."

Discordances in the molecular profiles between ctDNA and
tumor tissue specimens may reflect underappreciated tumor
heterogeneity within and between tumor foci. Serial ctDNA
assessment may also detect the process of tumor evolution
(105, 121), where the appearance of new molecular alterations
on treatment may herald the emergence of resistance and poten-

tially also predictive markers for different therapies. This phe-
nomenon has been best described for colorectal cancer, in which
ctDNA obtained after treatment of KRAS wild-type tumors with
anti-EGFR therapies has demonstrated newmolecular alterations
that plausibly confer resistance, including KRAS, NRAS, BRAF,
and EGFR mutations (96, 104) as well as MET amplification
(122). Ultimately, however, prospective studies will be needed
to demonstrate that treatment strategies guided by unique infor-
mation provided by ctDNA yield superior clinical outcomeswhen
compared with tissue-based approaches.

Applications based on ctDNA for noninvasive assessment of tumor
load. Reliable and sensitive methods to detect and quantitate
ctDNA may enable noninvasive disease monitoring in a man-
ner analogous to BCR-ABL testing in chronic myeloid leukemia
or HIV viral testing. Case studies in breast, colorectal, and non–
small cell lung cancer have suggested that ctDNA dynamics can
provide an early indicator of tumor response, which could help
optimize neoadjuvant therapy or treatment of metastatic dis-
ease. Ineffective therapies could be halted with the appearance
of resistance, avoiding unnecessary toxicity. Posttreatment
ctDNA levels may also be useful in detecting previously unrec-
ognized residual disease following definitive therapy. Anecdot-
al evidence has been reported to support this concept
(7, 17, 123, 124), but large, prospective studies will be needed
to demonstrate the prognostic value of residual disease
detected by ctDNA. Tie and colleagues (125) have reported
preliminary results of a prospective trial in stage II colon cancer
evaluating the relationship of postoperative ctDNA levels with
tumor recurrence. At a median follow-up of 507 days, recur-
rence rates were >10-fold higher in patients with detectable
postoperative ctDNA (5 of 6, 88% with detectable ctDNA vs. 5
of 72, 7%without detectable ctDNA). Finally, early detection of
cancer is a tantalizing application for ctDNA. At present, the
relatively poor clinical sensitivity of ctDNA for early-stage
disease (Table 4 and ref. 95) would result in high proportions
of false negatives and, more significantly, would limit the
degree of stage migration, which is critically important for
screening programs to affect patient outcome. Further devel-
opment of ctDNA platforms will be required before the chal-
lenges of cancer screening should be considered.

Table 4. Selected studies of ctDNA detection in various tumor types (Cont'd )

Study reference
Analytic platform
for ctDNA

Molecular
alteration

Number of patients
analyzed for ctDNA Tumor type Stage

Sensitivity (patients with
detected ctDNA/patients
with marker-positive
tumors)a

Newman 2014 (97) Sequencing with
cancer-specific target
capture

SNV, fusions 13 NSCLC I 2/4 (50%)
II 1/1 (100%)
III 4/4 (100%)
IV 4/4 (100%)

Thierry 2014 (119) Allele-specific PCR SNV (KRAS, BRAF) 95 Colorectal IV 41/42 (98%)
Douillard 2014 (107) Allele-specific PCR SNV (EGFR) 803 NSCLC IV 69/105 (66%)
Kidess 2014 (168) Sequencing with

sequence-specific
synchronous
coefficient of drag
alteration (SCODA)
enrichment

SNV (KRAS, BRAF,
PIK3CA, EGFR)

38 Colorectal I 0/2 (0%)
II 6/8 (75%)
III 1/2 (50%)
IV 13/14 (93%)

Abbreviations: BCLC, Barcelona Clinic Liver Cancer; BEAMing, beads, emulsion, amplification, magnetics; CNV, copy number variations; NSCLC, non–small cell lung
cancer; TNBC, triple-negative breast cancer.
aDetection of tumor-specific mutations in plasma (excludes cases where tumor harbored no detectable mutations).
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CTCs and ctDNA: FutureConsiderations for
These Complementary Approaches

A major reason for treatment failures is our inability to
monitor tumor evolution and adapt treatment accordingly.
Identifying tumor recurrence at an earlier time point does not
improve clinical outcome if an effective therapy is not selected
or available. Liquid biopsy technologies are potentially impor-
tant advances in this regard, with CTCs and ctDNA expected to
play complementary roles, on the basis of their relative
strengths and limitations (Table 5). Plasma ctDNA assays
(disease-specific, treatment-specific, or personalized) may
prove more useful for monitoring disease burden and limited
molecular profiling. Once increased disease burden is recog-
nized, then CTC analysis for comprehensive characterization
of tumor DNA, RNA, and/or protein levels, including their
co-localization, in known residual cancer cells may help to
optimize therapy selection (92). It is also quite likely that CTCs
may be particularly useful ex vivo, incorporated into functional
studies using CTC cultures, mouse xenografts, or real-time in
vitro assays for drug sensitivity evaluation.

Significant challenges remain, particularly with respect to
analytic and clinical sensitivity. Adoption of these tools into
routine clinical practice will necessitate rigorous demonstration
of analytic validity, clinical validity, and, most importantly,

clinical utility. One consideration in population screening is
that 11% to 19% of patients with benign inflammatory con-
ditions (e.g., Crohn disease) have small numbers of morpho-
logically benign circulating epithelial cells detectable, which
could potentially give a false-positive CTC result (126). Anoth-
er risk is the detection of clinically irrelevant molecular changes
due to the high sensitivity of the methods. Therefore, large
annotated datasets and bioinformatic tools will be needed to
distinguish potentially important genomic aberrations from
noise. Moreover, only clinical studies will provide evidence
about whether a genomic aberration detected in blood can
predict benefit from a specific targeted agent. Although most
efforts are currently focused on testing liquid biopsy in the
metastatic setting, we expect that future studies will evaluate its
role in the early disease setting or even as a potential tool to
assist early cancer diagnosis.
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