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ABSTRACT

Motivation: We introduce GMAP, a standalone program for mapping
and aligning cDNA sequences to a genome. The program maps
and aligns a single sequence with minimal startup time and memory
requirements, and provides fast batch processing of large sequence
sets. The program generates accurate gene structures, even in the
presence of substantial polymorphisms and sequence errors, without
using probabilistic splice site models. Methodology underlying the
program includes a minimal sampling strategy for genomic mapping,
oligomer chaining for approximate alignment, sandwich DP for splice
site detection, and microexon identification with statistical significance
testing.

Results: On a set of human messenger RNAs with random mutations
at a 1 and 3% rate, GmAP identified all splice sites accurately in over
99.3% of the sequences, which was one-tenth the error rate of existing
programs. On a large set of human expressed sequence tags, GMAP
provided higher-quality alignments more often than BLAT did. On a set
of Arabidopsis cDNAs, GMAP performed comparably with GeneSeger.
In these experiments, GMAP demonstrated a several-fold increase in
speed over existing programs.

Availability: Source code for gmAP and associated programs is
available at http://www.gene.com/share/gmap

Contact: twu@gene.com

Supplementary information: http://www.gene.com/share/gmap

INTRODUCTION
Mapping and alignment of cDNA sequence

(mRNAs) and expressed sequence tags (ESTs)—onto the geno

dds/gap?2 (Huang, 1996)Mm4 (Floreaet al., 1998), Spidey (Wheelan

et al., 2001), GeneSeger (Usukhgal., 2000; Schlueteet al., 2003)
and MGAIlign (Leeet al., 2003; Ranganathaat al., 2003). Finally,
some recent integrated programs, suctsasr (Kent, 2002) and
SQUALL (Ogasawara and Morishita, 2002), perform both genomic
mapping and alignment.

Despite the availability of these programs, achieving perfection in
cDNA—genomic alignment has been surprisingly elusive. Studies of
existing programs have revealed various types of errors in identify-
ing gene structures and splice sites (Hetad., 2002). In compiling
a database of EST-based splice sites, researchers have reportedly
had to resort to manual curation of alignments to obtain the cor-
rect results (Bursett al., 2001). Difficulties generally arise when a
cDNA sequence differs from its corresponding genomic exons, due to
polymorphisms, mutations or sequencing errors. Sequencing errors
are especially prevalent in ESTs, where error rates are estimated to
be 1.5% for high-quality sequences (Zhetcal., 2003) and 3-4%
overall (Richterich, 1998). Such sequencing errors, especially near
exon—exon junctions, can complicate the detection of splice sites.

One approach to this situation has been to combine information
across various alignments (Birney al., 2004; Haast al., 2003;
Brendelet al., 2004) or even multiple sources of evidence (Allen
et al., 2004) to arrive at a consensus answer. However, since such
programs depend ultimately upon the original solutions generated
by cDNA—genomic alignment programs, advances in the underlying
alignment methodology are still important.

In this paper, we introduce an integrated genomic mapping and
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s—bothmessenger RNA§Iignment program calledviap (Genomic Mapping and Alignment
r\5‘|°'ogram). In contrast to programs designed primarily to runin client/

hgibliecome a ce?tral procedure Irl] genomle r:es,_earch. The resultigger mode, such as.at andsQuaLL, our program operates as a
¢ —genomic alignments not only reveal the intron—exon struc+,itional standalone prograrGMAP provides not only improved

ture of genes, but also facilitate the study of splicing mechanics anB
such transcript-based phenomena as alternative splicing, single nugéy
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erformance over existing programs in terms of speed and accur-
but also enhanced functionality. The functionality provided by

leotide polymorphisms, and cDNA insertions and deletions (JiangbMAP allows a user to: (1) map and align a single cDNA interact-

and Jacob, 1998; Irizargt al., 2000; Karet al., 2001, 2002; Zavolan
et al., 2002; Modrek and Lee, 2002; Clangpal., 2003; Wheeler
et al., 2003; Drabenstat al., 2003; Kimet al., 2004; Floreat al.,
2005).

To address these needs, programs sucksasa (Ning et al.,

ively against a large genome in about a second, without the startup
time of several minutes typically needed by existing mapping pro-
grams; (2) switch arbitrarily among different genomes, without the
need for a pre-loaded server dedicated to each genome; (3) run the
program on computers with as little as 128 MB of RAM (random

2001) have been introduced to map cDNA Sequences 10 a geNyecess memory); (4) perform high-throughput batch processing of
ome. Other programs have been developed to align a cDNA tApNAs by using memory mapping and multithreading when appro-

a given genomic segment, includimyt_GENOME (Mott, 1997),

*To whom correspondence should be addressed.

priate memory and hardware are available; (5) generate accurate
gene models, even in the presence of substantial polymorphisms and
sequence errors; (6) locate splice sites accurately without the use
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of probabilistic splice site models, allowing generalized use of theexons, which manifests as regions of exact matches. Existing pro-
program across species; (7) detect statistically significant microexongrams exploit this fact either by finding clusters of relatively short
and incorporate them into the alignment; and (8) handle mapping andligomers, such as 11-mers.AT) or 14-mers{SAHA andSQUALL),
alignment tasks on genomes having alternate assemblies, linkage by using fewer long oligomers. The long oligomer approach is
groups or strains. exemplified by MGAlign (Ranganathast al., 2003): although it

In the remainder of the paper, we review existing work ondoes not perform mapping on a genomic scale, it initially aligns a
cDNA—genomic mapping and alignment, and describe the methodsDNA to a given genomic segment by scanning 20-mers from the
underlyingamap. Next we provide examples of how these methodsinends of the cDNA. Similarly, rapid mapping is provided by MUM-
GMAP lead to improved splice site and gene structure prediction. Themer (Delcheret al., 1999, 2002), which uses suffix trees (Manber
we compare the performance@fiap with existing programsinthree and Myers, 1993) to find long unique matches between genomes,
large-scale experiments. In experiment 1, we test for robustness tnd MegaBlast (Zhang al., 2000), which uses 28-mers to identify
sequence error by using test sets of human mRNAs with compusequence matches.
tationally simulated sequence errors. In experiment 2, we examine Existing cDNA—genomic mapping programs that use an oligomer
mapping and alignment quality for human ESTs with naturally occur-index on agenomic scale begin by pre-loading the index into memory,
ring sequence errors. In experiment 3, we evaluate the performanaghich means that these programs not only have a long startup time,
of GMAP on another species, namely, the plardbidopsisthaliana. butalso require computers with large amounts of dedicated RAM. For
Finally, we describe the implementation alMap and additional examplesQuaLL requires 12 GB of RAM, and the standalone version
features provided by the program. of BLAT requires 8 GB of RAM in order to map a cDNA sequence
onto the entire human genome. The startup time for the standalone
version of BLAT is several minutes, which makes it inconvenient
RELATED WORK for a researcher who wishes to map a single cDNA sequence to a
One approach to cDNA-genomic alignment has been to use genergénome, or who wishes to switch quickly among different genomes
sequence alignment programs, suchiasst (Altschuletal., 1990),  or versions of a genome. TherefopeaT typically runs in a client—
and then to assemble the resulting hits into gene structures (Gelfargrver mode, in which a dedicated server for a particular genome
etal., 1996; Wiehet al., 2001; Milanesi and Rogozin, 2003; Zhang, keeps its genomic oligomer files resident in RAMBAAT server,
2003; Yeoet al., 2004). However, the cDNA-genomic alignment which also requires several minutes of startup time, needs 1.2 GB
problem is important enough to warrant programs specialized fobf RAM to process the human genome, and must be kept running
the task. The particular problem that arises in cDNA-genomic aligncontinuously to answer queries from a client computer.
ment is the presence of introns, which appear as large genomic gapsin contrastGMAP is a standalone program that has been designed
of up to hundreds of thousands of nucleotides in length. Introns havgy handle individual queries rapidly, with essentially no startup time.
characteristic patterns at their splice sites, which cDNA-genomignstead of pre-loading the entire oligomer index file into memory,
alignment programs must take into account. About 99% of intronssmap looks up oligomers as needed directly from the file. Because
are bounded on their ends by the canonical dinucleotide pair GT-AGgccess to files is much slower than to memory, our file-based strategy
the remainder have a semi-canonical dinucleotide pair GC-AG 0fs enabled by a minimal sampling strategy that attempts to perform as
AT-AC, or another, non-canonical dinucleotide pair (Buetedl.,  few oligomer lookups as possible, while still mapping reliably to an
2000). Probabilistic patterns of conservation are also seen at pogntire genome. Our sampling strategy involves more than scanning
itions further away from the intron—exon boundary (Mount, 1981;|ong oligomers from the ends of a cDNA to find a matching pair.
Senapathyt al., 1990; Solovyev, 2002). Because our mapping universe is an entire genome, we must safe-

Existing programs for cDNA-genomic mapping and alignment,guard against false mapping results from the initial matching pair,
cited in the Introduction, provide a foundation for further advances.which can arise due to paralogs, pseudogenes and segmental duplica
In particular,GMAP draws upon three fundamental concepts intro- tions in the genome (Wheelahal., 2001; Baileyet al., 2002; Zhang
duced by earlier programs. Firstyiap uses an oligomer index table - and Gerstein, 2004). Therefore, reliable matching on a genomic scale
for genomic mapping. Secondmap takes a hierarchical approach requires additional steps, such as accumulating additional oligomer
to genomic alignment, by first computing an approximate alignmentkvidence beyond the first matching pair; monitoring when the num-
and then filling in the details. Finally, like almost all existing align- ber of candidate locations has been limited adequately; and sampling
ment programs;map applies specific methods tailored for detecting adaptively to extract information from different parts of the cDNA

splice sites and for incorporating them into the alignment. sequence, including the middle when necessary.
Although essentially all cDNA—genomic mapping and alignment

programs share these fundamental building blocks, they differ in theiAPpr oximate alignment

particular methods forimplementing them:; itis these methodologicajan approximate alignment step is necessitated by the large size
choices that largely account for differences in their performanceof genomic segments, which makes a nucleotide-level align-
In the Algorithm section, we provide a detailed description of thement prohibitively time-consuming, and is therefore used in some
specific methods underlyingvap; in the rest of this section, we form by virtually every cDNA—genomic alignment program. In
summarize the basic similarities and differences of our methodsst GenoME, approximate alignments are computed by using local
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relative to existing ones. Smith and Waterman (1981) alignments and the resulting seg-
. . ments are then recomputed with a global Needleman and Wunsch
Genomic mapping (1970) alignment. Spidey computes an alignment with increasing

Genomic mapping can be accomplished rapidly because of the neadetail by performing successigeAsT runs at decreasing stringency
identity between a cDNA sequence and its corresponding genomilevels.
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In other programs, the predominant strategy has been a ‘seea@ttempting to fix an existing approximate alignment, the method
and-extend’ strategy, in which the program first finds significantcomputes the whole subalignment in the region surrounding an
oligomer matches between the cDNA and genomic segment, theimtron. This approach guarantees that all possible combinations
extends these seeds to form longer matching fragments, and finalyf substitutions, gaps and intron shifts are considered, and per-
assembles a selection of these fragments into a collinear chaimits the use of various DP techniques. These techniques include
The seed-and-extend strategy is found in a variety of programsspecialized gap penalties that favor insertions or deletions of tri-
including those for genome—genome alignment (Cleaiad., 2003;  nucleotides (Gotoh, 1999) and band-limited alignment (Sankoff and
Morgenstern, 1999; Batzoglat al., 2000; Kent and Zahler, 2000; Kruskal, 1999), which enables efficient consideration of substitutions
Schwartzet al., 2000; Maet al., 2002; Brudncet al., 2003a,b; Bray  or gaps at a large distance away from the splice site.
et al., 2003; Kalafuset al., 2004), and constitutes the approach
in several cDNA—genomic alignment prograrSsv4 finds match- ~ Microexons
ing seeds of 12-mers in the genomic segment, extends these sedgsaddition to the above featuresmap has an explicit procedure
by nucleotide-level scoring of matches and mismatches, and thefor detecting microexons and incorporating them into the alignment.
assembles the resulting ‘exon cores’ through dynamic programmin@licroexons as short as 1 nucleotide in length have found apparent
(DP). MGAlign also applies DP, both to extend its fragments and toexperimental support (McAllistest al., 1992; Sterner and Berget,
combine local alignments into longer on@s.AT breaks the cDNA  1993; Simpsot al., 2000; Carlcet al., 2000), and a computational
into 500-bp chunks, uses these chunks to create alignment fragmerigidy suggests that between 0.5 and 1.6% of mRNA sequences in
through a recursive seed-and-extend method, and then uses DP\igrious species contain microexons (Volfovskyal., 2003). Such
stitch together these subalignments. short exons pose an acknowledged problem for cDNA—genomic

In contrastGmaP uses an oligomer chaining method that involves alignment programs (Floregt al., 1998). A procedure for identi-
neither seeds nor extensions. Rather, this method finds all matchirfging microexons has been developed by Volfovskyal. (2003),
8-mers between the cDNA and genomic sequence, and then usgad applied in a large-scale study. We further this work by integrat-
DP to find an optimal global chain of 8-mers. In this process, exonsng the detection procedure into the framework of a cDNA-genomic
are not created explicitly, but instead emerge implicitly from the alignment program, and by adding a probabilistic extension that
globally optimal distribution of 8-mer matches between the cDNA ensures that incorporated microexons are statistically significant.
and genomic segment. Although exon—exon boundaries are defined
only approximately by this method, their location is determined by
both distant alignment information and local information. OIigomerALGORITHM
chaining may extend an exon alignment that otherwise looks locallyn this section, we discuss the methods usedskyp in the con-
unfavorable, or terminate an exon alignment that otherwise lookéext of each of the major components needed for cONA-genomic
locally favorable, when such decisions contribute toward a bettemapping and alignment. Specifically, we describe: (1) a minimal
global alignment. We have found that the use of global informationsampling strategy for genomic mapping, (2) oligomer chaining for
is particularly important in the presence of sequence polymorphgenerating approximate gene structures, (3) sandwich DP for identi-
isms or errors, which can adversely affect local decision-making fofying splice sites, and (4) microexon identification with statistical
extending fragments. significance testing.

Splice site identification Minimal sampling strategy

Approximate alignment using 8-mers or other fragments generallf-or genomic mapping;MAp uses a sampling strategy designed to
does not have the resolution needed at the nucleotide level to detectinimize the number of oligomer lookups needed to map a cDNA
splice sites accurately. To recognize splice sites correctly in the preseliably to the genome. Our minimal sampling strategy is based
ence of sequence errors, a program must often introduce substitutionpon the use of long oligomers to achieve high specificity, combined
or gaps, shift nucleotides from one end of the intron to the other, owith an adaptive sampling scheme to utilize mapping evidence from
explore alternate locations for the splice sites. different parts of the cDNA sequence.

Existing approaches to splice site identification are based upon As discussed previously, the rationale for using long oligomers is
two ideas. The first idea is to apply various heuristics to fix or adjustheir exponentially greater specificity in the genome, which means
the approximate alignment to incorporate a splice site. For examplaghat mapping can be performed with few oligomer matches. Our
Spidey and MGAlign search for splice sites in the overlap betweerchoice of 24 as an oligomer length is guided by our own study of
adjacent exons, and then trim the exons at the highest-scoring spliaigomer uniqueness in the human genome, as shown in Figure 1.
site, whereasiv4 has an intron shifting procedure that adjusts the This graph, based on the unmasked portion of the NCBI human gen-
exon—exon junction to find the best pair of splice sites. The otherideame (build 29), shows the percentage of the observed oligomers
is to use splice site models, such as scoring matrices (Salzberg, 1993 various lengths that are unique in the genome. For example,
Brendel and Kleffe, 1998), which model the observed frequencyamong all 11-mers in the genome, only 0.1% of them have a
of nucleotides near the’ and 3 splice sites (Nakatat al., 1985;  unigue position in the genome. Likewise, among all 14-mers, only
Gelfand, 1989) and thereby provide clues about the presence ar&2.5% specify a unique position in the genome. On the other hand,
location of splice sites. when the oligomer length is 20 or more, the percentage of oli-

In contrast,cMAP handles this problem by using a formal DP gomers with a unique genomic location reaches an asymptotic level
procedure that we call sandwich DP. Sandwich DP involves two DRof 96—97%.
matrices, one for each end of an intron, and attempts to find the best Our implementation of 24-mer lookups on a genomic scale
alignment path across the diagonals of both matrices. Rather tharequires some adaptation of the index table schenssafa (Ning
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non-overlapping 12-mers in the genome, an overlapping sampling
interval provides increased resolution, but at the cost of a larger
position file. An additional advantage of overlapping sampling inter-
vals in our scheme is that it permits lookups of oligomers other
than 12-mers and 24-mers. For example, if we store 12-mers at an
overlapping interval of 6 (which is our default), we can determ-
ine the genomic location of oligomers of length 12, 18, 24, and so
on. These intermediate-length oligomers can be useful in genomic
— mapping. The use of 18-mers can give additional sensitivity for diver-
Possible number of distinct oligomers . . . .
B?gﬁrn‘g?gﬁ%eg&fé:Elﬁié\:ctg%i?)gné%?d gent seqguences, such as in the CrOSS-SpeCle.S genomic mapplng of
mouse cDNAs onto the human genome, and vice versa. In addition,
short cDNA sequences often have too few 24-mers for reliable gen-
omic mapping. In these cases, the program uses smaller oligomers:
Ve 18-mers if the cDNA is between 40 and 80 nt, and 12-mers if it is
12 14 16 18 20 2 24 less than 40 nt.
Ofoomer size In addition to using highly specific 24-mersmap employs an
adaptive sampling scheme designed to utilize mapping information
Fig. 1. Distribution of oligomers of various lengths in the masked region frgm different parts of the cDNA sequence. The sampling process
of the human genome (NCBI build 29). The horizontal axis represepts Varibegins by scanning both ends of the cDNA sequence, and monitoring
ous oligomer sizes ‘from 11 to 25. The total space of Poss'bl‘? OI'.gomer?he results until a pair of 24-mers match to approximately the same
increases exponentially, as shown by the exponentially increasing line. Fq[)cation in the genome. The definition of ‘same location’ depends

each oligomer size, counts of all overlapping oligomers in the masked part he | h of th ith I d .
of the human genome are shown by the top line, and the counts of distind‘t‘_pont e length of the query cDNA, with an allowed genomic expan-

oligomers are shown by the topmost sigmoid line. Distinct oligomers canSion of 1000 times the query length, subject to a default upper limit
be divided into unique oligomers, which occur once (shown by the sigmoidof 1 million nucleotides. Therefore, the program will not attempt to
line with percentages), and repeated oligomers, which occur more than ong&redict a long intron for a very short EST.
(shown by the bottom line). To avoid false localizations from a fortuitous pair of matches to
the genome, the program continues to sample beyond the first pair
etal., 2001). Inthat scheme, a position file contains the observed posf successful hits, in order to accumulate evidence of other pos-
itions of oligomers in the genome, and an offset file contains pointersible localizations in the genome. This amount of further sampling is
to the position file to indicate where a block of positions begins anddetermined both by a minimum distance (default 48 nt) and by a min-
ends for a given oligomer. Because this offset file contains an entryimum number of additional successful matches (default 3) required.
for each possible oligomer, its size grows exponentially with the oli-If this process yields a limited number of genomic locations, the
gomer length. In fact, 14-mers represent the current practical limitnapping process terminates.
for the ssaHA data structure, because the corresponding index file Onthe other hand, ifthere are alarge number of candidate genomic
occupies 1.1 GB. Extending this indexing scheme to 24-mers wouldbcations, thercmAP begins a sampling process that uses informa-
yield a sparse offset file of?4 = 281 trillion 32-bit entries, which  tion from the middle of the cDNA sequence. This sampling process
would be prohibitively large to store. is performed iteratively, with the sampling interval halved in each
Therefore, in our initial implementation aivap, we tried a hash-  round. At each sampling interval, the program looks for clusters on
ing scheme instead, where the space of 24-mers is mapped ontalze genome with a high concentration of matches, with the provi-
space of 12-mers using a hash function. If a given 24-mer has a mataion that genomic positions be collinear with the cDNA positions.
somewhere in the genome, an entry for the 24-mer can be found iBampling terminates when the correct genome location is resolved
the expected hash bin. This entry then provides the appropriate offsét a limited number of good candidates. This determination is made
into the position file. by setting a threshold at 70% of the number of matches in the best
Although this hashing scheme worked reasonably well, we subeluster, and requiring that only a limited number of clusters (currently
sequently found a more efficient solution by using a double lookupdefined as 10 or fewer) are above this threshold.
scheme, which breaks up the problem of finding a 24-mer into the For each candidate cluster of 24-mers, the program extracts the
problem of finding two 12-mers. In other words, we implement thecorresponding segment from the genome, with the correct strand of
SSAHA data structure for 12-mers, with the requirement that entrieshe genome determined by the orientation of the matching 24-mers.
in the position table be pre-sorted in ascending numeric order withifo extend the genomic segment to regions that may be relevant for
each oligomer. To find the positions for a given 24-mer, we look upfurther alignment at the oligomer and nucleotide level, the program
two lists of genomic positions, one for the initial 12-mer and onelooks up the genomic positions of the nearest 12-mers that match to
for the terminal 12-mer. The desired set of 24-mer genomic locathe ends of the cDNA sequence.
tions is obtained by finding pairs of entries in these two lists that are_ .
separated by 12 nucleotides. The reason for pre-sorting the genomfeligomer chaining
positions within each oligomer is to make this procedure run in linea~or approximate alignment, oligomer chaining attempts to find a path
time with the number of genomic positions, rather than quadratic. of 8-mers that match between the cDNA sequence and each genomic
The size of the position file is determined by the genome sizesegment found in the mapping step. The procedure is illustrated in
and by how often oligomers are sampled in the genome. Althouglthe top part of Figure 2. Instead of the standard DP paradigm, which
minimal coverage of the genome can be achieved by sampling allses a matrix to align two sequences, oligomer chaining uses an
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Fig. 2. Oligomer chaining and nucleotide-level alignment. The top part of the figure shows oligomer chaining. The horizontal axis represents positions on the
cDNA sequence. Each cDNA position may have one or more matches of 8-mers to the genomic segment, represented by a vertical stack of cells. For gach
cell, the DP procedure looks for an optimal previous cell, as represented by thin diagonal lines between cells. The highest-scoring chain of 8-mer matcfes,
represented by a thick line, describes the optimal approximate alignment. This alignment may contain jumps in cDNA or genomic coordinates, due to intrags,
cDNA insertions or sequence differences. These jumps are resolved by various nucleotide-level alignment procedures, represented in the bottom of the f%ure
by various DP matrices. Sandwich alignments bridge large coordinate jumps across introns (horizontal dashed line) or long cDNA insertions (vertical dasﬁed
line). The existence of short exons is resolved by an exon testing procedure that compares alignments with and without the short exon.

e

equivalent but more efficient representation in the form of an array ofo ensure that local extension does not gain an unwarranted advantage
linked lists. Each position in the array corresponds to an overlappingver an intron.
8-mer in the cDNA sequence, and each 8-mer has a linked list of One cost of our approach is greater computational complexity than
positions in the genomic segment where that 8-mer is found. Thesene based on larger fragments. As described so far, oligomer chain-
linked lists are represented in the figure as a vertical stack of cellig is O (m?g?), wherem is the length of the cDNA ang is the
at each cDNA position. Each cell also contains placeholders for thaverage number of cells per linked list, which is generally propor-
optimal subscore to that point and for a pointer to the best previoutional to the length of the genomic segment. (A totalnf cells
cell that produced the optimal subscore. must be processed, and at each cell the algorithm must look back at
The array of linked lists is generated by first pre-scanning thethe previous set of cells processed.) In order to reduce the complex-
cDNA for overlapping 8-mers and noting which 8-mers are presentity to O (mg?), we impose a sufficiency limit on the look backward.
and hence relevant. This pre-scan prevents unnecessary work latéipte that this limit applies only to the cDNA sequence coordinates;
because most of the 8-mers in the longer genomic sequence are irr¢here is no limitation on the look backward in genomic sequence
evant. Then the algorithm scans the genomic segment for relevarbordinates. The sufficiency limit has a default value of 60, which
8-mers and adds their genomic positions to a list maintained for eacexpresses our calculated expectation that we should find at least one
relevant 8-mer. Finally, the algorithm scans the cDNA again, makingnatching 8-mer between the cDNA and genome within that distance,
a copy of the appropriate position list for each element of the arrayeven accounting for extremely low sequence quality. By using prob-
After building this data structure, oligomer chaining proceeds withability calculations based on finite-state automata (Atteson, 1998),
a DP procedure that assigns a subscore and pointer to each celle estimate that if the sequence error rate is 5%, then the chance of
starting from the beginning of the cDNA sequence. For each cellfailing to have an error-free stretch of 8 nucleotides out of 60 total
the algorithm looks backward to cells at previous cDNA positionsnucleotides is 3.& 107S.
to identify the cell that both is consistent and generates a maximal The pointer and optimal subscore for a given cell are based on
score to the given cell. A previous cell is consistent if its genomicthe best solution found within this sufficiency limit. However, a
position is lower than that of the given cell, which enforces collin- cDNA sequence may have a local concentration of mismatches or
earity of the cDNA and genomic sequences. The score for the cethaps that precludes 8-mers from being identified in a particular
is the score of the previous cell plus 1 to indicate the length of thestretch. Therefore, if no matching 8-mer is found within the suf-
chain. Because introns will cause 8-mers in the cDNA not to matchficiency limit, the algorithm will continue looking backward as far
the algorithm compensates for such cases by adding enough poirds needed to find a match. This provision allows the algorithm to

2102 ‘€ |udy uo sndue) swouss) 1snJ ] awod|pM e /Bios

1863


http://bioinformatics.oxfordjournals.org/

T.D.Wu and C.K.Watanabe

- OL21 21 =21 +-39+-39 -39 -57 =57 =57 =75 -75-75. 0 O
A -21 3-18+-18+-18+-36-36-36-54-54 =54 -72-72-72 O ...-30 0O O O O O O O 0 A
C -21 -18 6€15+-15-15-33-33-33 =51 =51 =51 -69-69-69 ... -9 -21 0 0 O O o o o C
T -21 -18 -15 9—12=12=12-30-30-3048 48-48-66-66... -9 0o -21 0 0o o o o o T
G-39-18 -15 -12 0, *9 -9-=21-30-30 -27--45-48-48-66...-21-12 3 -24 0 o o o o G
G 0 -36-15 -12 -21 3: -6--18-18-27 -27 -24=-45-45-45... 0_-12 -3 -6 -27 o o o o G
C o 0 -33-12 -21-18 -6 *3<€24-24 -24 -36-33-42-54...-12 9. 3 -6 -9 -30 0 0o o C
A o o o0 -30-21-18 -27 -15 O =21 =21 -21-39 -30 -39 ... -3 =318 -6 -9 -12-33 0 0 A
G o o o 0 -39-18 -15 -24 -21 —9—18.—""_—_7,_9_—_3_9_... -6=6—=6—-15 -9 -12-15-36 0 G o
GO O 0 O 0 -36-15-24-21-30 -6--15-27-27 —3.5;-—'9"—'9"—‘;12 415 -18 -39 G §
G o 0 0 0O O 0 -33-24-21-30 -27 -3--24-24-24 ... -30-30-12 =12 -12 9\;].5 -18 -21 G %
T o o o o 0 0 0 -42-33-30 -27 -24 0=-21-21...-33 -33 -33 -15 -15 =156 -18 -21 T 3
Ao o o o 0o o O 0 -39-30 -27 -24 -21 3 -18 ... -54-36-36-36-18~-18~-18 3\;:11A g
-57=57=3939 -39 21212170 - %
T T G GTA - =
Fig. 3. Sandwich DP for identifying splice site boundaries. This solution corresponds to an intron in EST sequence BF846255, shown in the middle of Figur§'4.
Two alignment matrices are shown. The cDNA sequence is shown on the common vertical axis, aathth& genomic ends of the intron on the horizontal Q
axis of each matrix. The two matrices are solved ‘outside in’, as shown by the direction of the arrows. The optimal solution, shown in bold, is found by addiig

terms in adjacent rows, plus a reward for canonical introns, as indicated by the boxed GT-AG pair.

cope with sections of cDNA that have extremely poor sequencéiandle not only introns, but also long cDNA insertions relative to
quality. the genome, which occur rarely. For introns, the jump in genomic

In order to reduce the complexity further émg), we note that  coordinates is much greater than that for cDNA coordinates; for
one cell in the linked list for a given 8-mer usually has a score thatDNA insertions, the opposite is true. For simplicity, we describe
dominates over the scores of other cells in the list. Domination occurprimarily the intron case, as shown in Figure 3, in which the cDNA
if the best score exceeds the second best score by more than the inteequence is placed on the common vertical axis and the genomic
compensation discussed previously. In such cases, the dominatirnds of the intron are placed on the horizontal axis. To handle cDNA
cell can be marked by a pointer, so that downstream cells lookingnsertions, the procedure switches the assignments of cDNA and
backward to the given 8-mer need consider only that cell. genomic sequences to the two axes.

Finally, the overall approximate alignment is obtained from the In sandwich DP, the goal is to find an optimal path from the upper
optimal path of cells, which represents a set of matches betweeleft corner to the lower right corner. For the intron case, this path
8-mers in the cDNA and genomic segment. This path of 8-mers ibridges the coordinates for the cDNA sequence but allows genomic
converted into an alignment at the nucleotide level, using a linkectoordinates to jump across the intron. To find the optimal path, each
list representation, in preparation for alignment procedures at thenatrix is scored ‘outside in’ by the usual Needleman and Wunsch
nucleotide level. (1970) procedure, which enforces an alignment to the ends of the

At this pointin the algorithm, the program can assess the quality ofntron. However, once scoring is complete, we cannot proceed dir-
the cDNA against the genome, based on the number of short breakstly to backtracking, because a single optimal score is not directly
in the alignment. This quality information can be useful in guiding available. Rather, we must find the optimal combination of scores
the rest of the algorithm. The fraction of such short breaks relativebetween the two matrices by evaluating adjacent rows (representing
to the total alignment length is defined to be the defect rate, anddjacent cDNA positions) and pairs of columns within those rows.
is used to classify the cDNA sequence as being of high (defect rat€esting each adjacent pair of rows is equivalent to shifting nucleotides
<0.3%), medium (0.3-1.4%), or low quality (>1.4%). This classific- across the gap, whereas selecting different columns is equivalent to
ation enables appropriate parameters for nucleotide-level alignmettying different splice sites. The algorithm selects the combination
to be selected automatically, so that substitutions and gaps are motieat produces the maximum combined score, including a reward if
likely to be introduced for low-quality sequences, and less likely forthe solution results in a canonical or semi-canonical splice site.
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high-quality sequences. Sandwich DP is one of several nucleotide-level alignment proced-
. . ) ures used to fill in gaps in the approximate alignment. In addition
Sandwich DP and other nucleotide-level alignment to introns, other types of sequence differences can cause 8-mers

GMAP uses a procedure we call ‘sandwich DP’ to compute sub-hot to align in the oligomer chaining procedure and thereby yield
alignments around introns. Actually, sandwich DP can be used tdiscontinuities or jumps in the cDNA or genomic coordinates in the
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alignment. Each of these types of coordinate jumps is handled by an The above nucleotide-level procedures are tried under the two
appropriate nucleotide-level procedure, as shown in the bottom passsumptions that the cDNA sequence is sense or antisense, and the
of Figure 2. These procedures are applied in a particular order in fourDNA direction is determined, if possible, based on the higher align-
passes through the alignment. ment score in terms of canonical splice sites, matches, substitutions
In the first pass, the algorithm solves regions where the cDNAand gaps. When multiple candidate alignments are found, due to mul-
and genomic coordinate jumps are approximately equal, indicattiple genomic segments found in the mapping step, the candidates
ing the presence of small sequence differences such as mismatcha® ranked and reported according to their alignment score.
or short insertions or deletions. The program fills in these gap S . e
with global Needleman—Wunsch DP, which enforces alignment tjDrObabI“StIC microexon identification
both ends. The problem of detecting microexons is challenging because merely
In pass 2, the algorithm validates the existence of short exong;hanging parameters to identify them often backfires, resulting in
defined as those with fewer than 80 nt (but at least 8 nt, which i$purious extra exons in the middle of introns. The problem is par-
the minimum resolution of oligomer chaining). This step is neces-icularly acute for long introns, which have a greater opportunity
sary because an approximate alignment from oligomer chaining caf® have an exact match by chance to a given short oligomer. In such
contain small islands of 8-mers, as small as a single isolated 8-me¢ases, a program must decide whether extra nucleotides in the cDNA
which may represent either a true short exon or a spurious match. firé due to a microexon or to an insertion in the adjoining exons.
the match is spurious, a better alignment should result by splitting GMAP has an explicit procedure for finding microexons, based on
the short exon and merging the halves into adjacent exons. Therée method by Volfovskt al. (2003). It applies this procedure in
fore, to decide whether a short exon does indeed exist, the algorithip@ss 3 of nucleotide-level alignment when the initial alignment of an
attempts to align the region under the two assumptions that the shofttron is neither canonical nor semi-canonical, and when the align-
exon is present (meaning two introns and a middle exon) or that ifnent surrounding the intron has more than an acceptable number of
is absent (meaning one intron). It then merges in the subalignmerfismatches or gaps (0 for a high-quality sequence, 2 for medium
that provides the better alignment score. and 3 for low). Also, we require that a microexon be reported only if
In pass 3, the algorithm fills in large relative jumps in coordinates it matches perfectly to the genomic sequence and is surrounded by
where the jump in genomic coordinates is much greater than that d#vo canonical introns.
the cDNA jump, or vice versa. The former situation is due to introns, When these conditions are met, the program calculates a lower
and the latter, which occurs rarely, is due to long cDNA insertionslbound on the microexon length that satisfies a given statistical signi-
The algorithm handles these jumps by applying the sandwich Diicance level (p <0.01 by default). The calculation imposes a higher
procedure described previously. minimum length requirement for a microexon in a longer intron, to
In the fourth and final pass, the algorithm extends tharil 3 Offset its higher likelihood of an exact match by chance.
ends of the cDNA sequence, by using DP for the sequence ends. Ve assume a simple model where nucleotides in an intron of
End sequence alignments are computed by constraining one end §ngth L are generated independently with uniform distributions of
the alignment and allowing the distal end to terminate at an optimal/4 probability per base. For a microexon witmucleotides, the
stopping point. This procedure is implemented by a modified SmitHProbability p that the microexon matches somewhere in the intron
and Waterman (1981) local alignment, in which we choose an optima®nd is surrounded by two canonical introns is
score from anywhere in the matrix for backtracking, but do not reset .’
negative scores to zero during the scoring procedure. If all scores in p=1- [1-0_ /4 ] @)

the matrix are negative, the end is not extended. Note that heren = e + 8 to include the exon lengthas well as the

Each of the above DP procedures employs a band-limited Searc§1 ositions for the two required canonical dinucleotide pairs. If we
through the score matrix (Sankoff and Kruskal, 1999). Such an P d pars.

approach is relatively sound because oligomer chaining bounds thseolve this equation far, we obtain

solution well from a global perspective, leaving only small sequence log(1— (1— p)Y/L)

edits to be performed. Another implementational detail is that before =- log(4)

each nucleotide-level DP procedure is performed, some of the nucle-

otide matches on each end of the coordinate jump must be ‘undon&herefore, given an intron lengihand an upper limit on the statist-

or ‘peeled back’. The resulting margin gives the nucleotide-level DRcal significancep, GMaP calculates the lower limit fom:, and then

procedure freedom to find a better alignment than that found by theearches for microexons that are of size m — 8 or longer.

coarser oligomer chaining procedure. Like the Volfovsky method, our procedure searches for GT and
Our DP procedures allow us to handle codon insertions and deleAG pairs in the 5and 3 ends surrounding the intron, but considers

tions gracefully by an appropriate gap penalty function. We use anly those that satisfy the calculated lower bound on the microexon

‘step function’ gap penalty, where instead of a per-nucleotide extenlength. Also, our procedure looks only within 12 nt of the align-

sion as in the usual affine gap penalty, we have a per-codon extensionent boundaries rather than the 30 nt by Volfovsky, because longer

penalty. This per-codon penalty is equal for gaps of 1, 2 and 3nicroexons would have been identified by oligomer chaining. Poten-

nucleotides, likewise for 4, 5 and 6 nucleotides, and so on. As dial microexons are then scanned across the intron using Boyer and

result, our algorithm has a preference for insertions and deletionsoore (1977) sublinear-time string matching, and accepted if they

that are multiples of 3. Similar gap penalties that favor multiples ofare surrounded by the requisite AG and GT dinucleotide pairs.

3 have been used in other programs (Gotoh, 1999). The preferenceSimilarly, in pass 4gMAP can find statistically significant micro-

for trinucleotide gaps reflects selection pressure at the protein levedxons at the 5and 3 ends of the alignmentGmap is very

to avoid frameshifts and preserve the coding region. conservative in applying this procedure, requiring a high-quality

)
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1sequence difference 2 sequence differences o sequence differences
BF669985:519..530, chr +X BF846255:69..80, chr +9 BF591480:252..264, chr +11
Evidence $36950, M64241, M73791 No overlapping ESTs AI051280, BE858123
GMAP CAGAAGGTATGT. . .CCTTAGATCCACA | ACTTGGCAAGGTAAAT. . .ATTTAGGGTA | ACATTGTGAAGT. ..TTGTTTGGTGAC
[TITTI>>>>>>. 0 .05>>>>> | -1 1] [T=T1T1=11>>>>>>...5>>>>> | || [T [ ====== ======[111]
CAGAAG 75 ATC ACA | AC TGGC AG 7812 GGTA | ACATTG 98 GGTGAC
BLAT CAGAAGGTATGTAG. . . TAGATCCACA | ACTTGGCAAGGTA...TCATTTAGGGTA | Same as GMAP
[T ======. . 2z====| || | [ 1= |======  ======|||]|]
CAGAAGAT 76 CACA | ACT GGC 7813 AGGGTA
dds/gap2 | Same as GmaP ACTTGGCAAGGTAA. . .CATTTAGGGTA | Same as GMAP
[11-111l======...======] | |||
ACT GGCA 7813 GGGTA
v}
GeneSeqger | Same as GMAP Misses 5’ exon Same as GMAP g
S
MGAlign Same as GMAP ACTTGGCAAGGTAAAT. . .TTTAGGGTA | ACATTGTGAAG. . .GTTGTTTGGTGAC 8
F11=111] l======...2zz===| || [ 1] |===z==. . .2===== ||| ]]] o]
ACT GGCAGG 7813 GTA | ACATT 98 GGGTGAC =
o
3
SIM4 Same as GMAP Same as GMAP ACATTGTG. . . AAGTTGTTTGGTGAC =3
[Tl I>>>00.5>>—=-— 111111 2
ACATT 92 G GGTGAC =
o
. 3
Spldey CAGAAGGTATGTAGTG. . .GATCCACA | ACTTGGCAAGG. ..GTCATTTAGGGTA Same as GMAP g
P11 | ======  =====c| | [1| |======...====== ||| ||| 3
CAGAAGATCA 76 cA | acTGe 7814 CAGGGTA %-
Q
%
Q
Fig. 4. Splicing errors. This figure shows alignments generated by various programs around introns in three sequences. Alignments have been formatte&in ¢

uniform style. The first column shows a canonical intron (marked-By from an EST with one sequence difference nearby: a single gap (marked)y *

The second column shows a canonical intron from an EST with two gaps nearby. The third column shows a non-canonical intron (regjkedhond
mismatches or gaps. Alignments have the genome sequence on top and the cDNA on the bottom, with the cDNA in its forward direction. Numbers below
intron indicate its length in nucleotides. Other overlapping ESTs are listed as evidence for the alignment found. by

ch

sequence, an adjacent canonical intron, and the remaining subwo sequence differences, oniyar and sim4 can recognize the
sequence to match exactly to the genome. When these conditiomsinonical intron. Programs can be overly liberal inidentifying introns
are met, the program tests each candidate microexon of length as being canonical, thereby resulting in false positives. This is seen
in the remaining end sequence from longest to shortest. For eads the third EST, in whicRim4 appears to overcall a canonical intron
microexon length, the program computes the maximum length by introducing gaps of 5 nt in an mMRNA that otherwise has perfect
genomic sequence for the microexon to be statistically significant: sequence identity to the genome.

Another class of errors seen in cDNA—genomic alignmentinvolves
= gene structure, manifesting as missing or extra exons, as illustrated

log(1— (1/4™) in Figure 5. The first example shows an apparent 6-nt difference

In this case, the number of matchesis= e + 4, to account for the ~ Petween the cDNA and the genomémap and GeneSeqer inter-
microexon lengtle and the canonical dinucleotide pair in the intron. Prét this as a microexon surrounded by two canonical introns. Other
This amount of genomic sequence is then scanned for an exact matBF9rams give less plausible alignments, involving a combination of

of the microexon using a Boyer—Moore search, and the microexoffoN-canonicalintrons, 4-nt microexons, and nucleotide substitutions
is accepted if it yields a canonical intron. and gaps. The second example in Figure 5 shows that many align-

ment programs truncate their alignment prematurely in the presence
of substitutions or gaps. In this examptegap and GeneSeqer are

I - log(1- p) ®)
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RESULTS ) i DM
able to extend the alignment, thereby revealing a canonical intron and
Examples an additional exon. The third example in Figure 5 shows how initial

The methods employed iymAP enable it to handle certain types and terminal exons can be difficult for some alignment programs to
of alignment problems that pose challenges for existing programdind. This EST has a final 31-nt exon that is missed by various pro-
Some illustrative examples of these problems are shown in Figuresgrams, which try instead to extend the alignment locally. Although
and 5. one must generally be cautious in making inferences from ESTs with

Figure 4 shows some cases of splice site detection in the presencesg#quence errors, analysis of a rare gene of interest may depend on
sequence error. For the first EST, which has one sequence differenagaximizing information from a single EST. In these examples, the
relative to the genome, the canonical intron is recognized by fivepredicted exons are indeed supported by other sequences, as listed
out of seven programs. However, for the second EST, which ha# the figure.
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Microexon Low quality 3" end Final exon
BM467080:555..571, chr +3 BG118317:738..757, chr —12 AA036958:424..439, chr —1
Evidence BE261245, BQ879950, CK004314 BG385668, BG747641, BM745724 CD612209, BF382871
GMAP GAGTCAGGTA. . . CAGCATCAGGTA. . . TAGACAA | GCTATATGAAGAGGTA. . .CAGGAGATCCGG | AAGGTA. . .CAGGCTGATTCACCCC
FITTTT S>>0 coss>> T I>>>0 0 >>>] ] Il T =T S>>0 us>> =111 [l ls>>cous>> T
GAGTCAG 393 CATCAG 198 ACAA | GTTGTATG AGAG 522  GA ATCCGG | AAG 6772  GCTGATTCACCCC
BLAT GAGTCAGGTA. . .CTTCATCTCA. . .TGTacACAA | Alignment ends at nt 651 AGGAAGG
[T === .===111l===...=== 11| [RRREN
GAGTCAG 48 CATC 543  AGACAA AGGAAGG
dds/gap2 GAGTCAGGTA. . .CCTCATGTAGACAA GCTATATGAAGAGGTATGTT. . .GATCCGG AAGGT ATTTGTCCC
[Tl ===.co===111 =111l Il T rr=1rir Ii===...===1111 [ ==11 I
GAGTCAG 590  CATC AGACAA GTTGTATGA GAGGAAT 523  CCGG | AAGGCTGATTCACCCC
GeneSeqer | Same as GMAP Same as GMAP Same as GMAP
MGAlign | tcac 595 acacaa Alignment skips nt 691 to 748 Same as GMAP
[REREZE e NN
TCAG 4 AGACAA
SIM4 GAGTCAGGTA. . . CTGCCCTCATGTAGACAA Alignment ends at nt 714 AAGG T ATTGTCCC
[T === .===—===111= 1l FIrr=1=11 [
GAGTCAG 586 CAT CAGACAA AAGGCTGATCACCCC
Spidey GAGTCAGGTACTTGAA. . . TAGACAA Alignment ends at nt 705 Same as GMAP
(NEREEE | ===...===1111
GAGTCAGCATCAG 591  ACAA

Fig. 5. Gene structure errors. This figure shows alignments for three additional ESTs. Notation follows that of Figure 4, with the addition of the character *

which indicates a dual break in the alignment in both the genome and the cDNA sequence. The lengths of the two breaks are indicated above and belo

alignment.

Experiment 1: Human mRNAs To test how robust alignment programs are to sequence error, we

We performed a comparison akiap with several existing genomic generated twc_) additional test sets by con_wp_utationall)_/ introduging
alignment programs on full-length human mRNAs. For this an(,j1|},3i5,rr:1ndom mutations at rates of 1 and 3%. A similar mutation paradigm
we used the 1 November 2004 release of Ensembl mRNAs, anfas been used to evaluab initio gene structure prediction pro-
extracted the 885 sequences annotated to be on chromosome 22. Wi@ms (Burset and Guigo, 1996). For each position in an mRNA
ultimately excluded two sequences from this set, because subsequéduence, we generated a random number that determined, with
runs of bothamaP andBLAT failed to map them to chromosome 22. 1 or 3% probability, whether a mutation would be introduced at that
Sequence ENST0355936 was placeddsyap on chromosome 2 position. If a mutation event was _selected, we generateo_l an addi-
and byBLAT on chromosome 7, and sequence ENST0357004 wational random number that determined whether the mutation was a
placed bycMaP on chromosome 1 and was not localizedsoyt to substitution, insertion or deletion, with 80, 10 and 10% probabilit-
anywhere on the human genome. ies, respectively. These probabilities are the same as those used by
The Ensembl data set contains annotated exon boundaries, whid@mmiet al. (2003) in their simulation of observed errors in shot-
we used as a gold standard. Our data set contained a total of 868N Sequences. For substitution and insertion events, we generated
exons. Some exons were extremely short, with 41 exons havin nucleotide randomly, without regard to the original nucleotide.
lengths of 3-10 nt. In addition, some inter-exon regions were als herefore, the original nucleotide may have been resubstituted in
extremely short, with 125 having lengths of 1-7 nt. These regiond€ given position, resulting in no change. .
between exons are annotated as ‘introns’, although some programs'Ve provided each of the three mRNA data sets as input to the fol-
may annotate these simply as small cDNA deletions. In fact, experil®Wing programs that were available to us and which were designed
mental evidence (Wieringa al., 1984) suggests that introns require to run primarily on vert.ebrate MRNABLAT version 3.1 (31 O(?tober
at least 70 or so nucleotides for splicing to occur, and computationaf094), dds/gap2 version 30 October 2003, MGAlign version 1.3.7
evidence (Yuet al., 2002) provides evidence for a species-specific(25 September 2003)kim4 version 21 September 2003, Spidey
minimal intron length. For 16 of the 41 short exons, there was aversion 1.35 andiMAp. Parameters used were all default, without
short intron immediately preceding or following. Further inspection@ny additional flags, with the following exceptions: fam4, we
of these 16 short intron/exon patterns and comparison of the aligri#Sed the flags A= 4 P=1', which prints the alignment and removes
ments with available EST evidence suggests that these patterns mB§!Y-A tails (which are not present in these data sets anyway); for
have been introduced computationally in order to maintain the read>Pidey, we used the flag -p 0", which prints the summary and align-
ing frame. The remaining 25 short exons surrounded by introns offent; and forsMap, we used the flags -BA' to indicate a batch run

typical lengths may be considered to be true microexons. that pre-loads genomic files into RAM and prints the alignment. For
dds/gap?2, we ran the three programs dds, ext and gap2, each without
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Table 1. Results of aligning 883 Ensembl mRNAs from chromosome 22

Condition Time Gene structure errors Splicing errors Union
Mis5 Mis3 MisM Misl Extr Mult Total Shift Over Mult Total

GMAP, 0% 1:12 1 0 0 0 0 1 2 0 0 0 0 0
GMAP, 1% 1:20 3 6 3 0 2 1 15 0 0 0 0 15
GMAP, 3% 1:30 10 7 8 3 2 2 32 5 1 0 6 34
BLAT, 0% 6:40 20 9 8 1 1 2 41 4 0 6 10 47
BLAT, 1% 6:34 21 10 8 5 24 7 75 71 1 13 85 141
BLAT, 3% 6:29 23 12 6 12 99 32 184 172 0 54 226 331
dds/gap2, 0% 8:25:54 3 9 20 17 6 22 77 47 0 10 57 93
dds/gap2, 1% 8:23:21 4 10 20 14 5 20 73 86 0 17 103 135
dds/gap2, 3% 8:01:09 1 12 21 14 6 20 74 163 0 40 203 227
MGAlign, 0% 2:45 1 0 13 2 5 4 25 31 1 3 35 45
MGAIlign, 1% 1:26:24 2 0 13 5 6 6 32 132 1 43 176 188
MGAlign, 3% 2:47:01 4 1 12 13 26 10 66 213 1 160 374 400
siM4, 0% :38 4 0 18 20 1 10 53 37 1 1 39 64
siM4, 1% 141 6 1 18 22 2 12 61 42 2 1 45 74
siM4, 3% :39 12 1 18 23 2 11 67 52 2 2 56 89
Spidey, 0% 1:26 16 2 21 11 2 18 70 54 0 36 90 112
Spidey, 1% 1:24 15 2 21 11 1 14 64 196 0 81 277 299
Spidey, 3% 1:29 13 3 19 11 5 19 70 227 1 268 496 517

Entries indicate the number of sequences with errors of various types. Key: Mis5, Mis3, MisM ang Miissing 3, 3, microexons, and other internal exons; Extr = extra exon;
Shift = shifted canonical intron to another genomic position; Gvevvercalled canonical intron; Muk multiple errors of a given class. The final column shows the union of all
sequences with some error. Run times are in (hours:minutes:seconds) are for mapping and aligainexP and BLAT, and for alignment by the other programs.

1IN0 [pJ0JX0°Sa1FeWIoUI010//:d1Y WoJ) papeo jumoq

any additional flags. For pure alignment programs, we provided therrors in a sequence were actually committed. Hence, a sequence g
genomic segment corresponding to each mRNA, with an additionaihat had more than one error of a given class was counted as a single 3
1000 nt on each end. We tested all programs on an Intel Linwsequence error, with such cases being placed into a ‘multiple error’ €
machine with 2 Xeon processors at 2.4 GHz with 2 GB of RAM category. Gene structure errors occurred in cases where the genomic
running RedHat Linux. alignment program missed one or mofg3or internal exons (either

For each data set, we developed a gold standard set of exon—exaricroexons or longer ones), or inserted an extra exon. Splicing errors
boundaries in the cDNA. The gold standard for the unmutated datavere counted when a program shifted either end of a gold standard
set was derived from the exon coordinates provided by Ensembtanonical intron to a different genomic position, or when it shifted
Annotations were added to indicate whether the correspondingither end of a gold standard non-canonical intron to create a canon-
introns had a canonical or non-canonical pair of dinucleotides, anétal intron. We call the latter error ‘overcalling’ a canonical intron.
to mark short exons (10 or fewer nucleotides) and short introns (7Tn the gold standard, we found 2 non-canonical introns that could
or fewer nucleotides). Gold standards for the mutated data sets web® converted to a canonical one with 0 substitutions or gaps; 38 that
computed by shifting the exon—exon boundaries accordingly wherould be converted with 1 substitution or gap; 6 with 2 substitutions
they followed insertions or deletions. or gaps; 11 with 3 substitutions or gaps; and 3 with 4 substitutions or

We parsed the output of the different programs into a uniformgaps. We excluded these introns from being counted as either shifting
format that contained the computed exon boundaries, plus the dinuor overcalling errors, since many programs are designed to convert
leotide pair for each intron. We then compared the computed exothese non-canonical introns into canonical ones. In particular, on the
boundaries with the gold standard to count errors of various typesunmutated data setim4 converts all of the above non-canonical
Our comparison involved a DP procedure to find correspondingntrons into canonical ones, amiap converts all that involve 0, 1
exon—exon boundaries between the computed and gold standard gesre2 substitutions or gaps, or that involve 3 contiguous gaps.
structures. This procedure was relatively simple to implement, but Because we evaluated gene structure and splicing errors separately,
was needed to score results for the mutated data sets, which causedequence could have been counted as an error in each class, which
programs to frequently miss exons or include extra ones, and to shiticcurred especially when the errors were interrelated. For example,
splice sites by various distances. Complete input and output filefilure to recognize an internal exon, especially a microexon, can
for this and the other experiments are available as Supplementatgad to an error in finding the correct splice site. (On the other hand,
Material. failure to recognize a’5or 3 exon would not lead to a splicing

We classified errors into two classes—gene structure errors anefrror, since no intron would have been predicted.) Because the two
splicing errors—and counted the number of mRNAs for which error classes are not mutually exclusive, we also tallied the union of
an error occurred. Counting on a per-sequence basis makes sersauences with one or more errors of any type.
because splicing and gene structure decisions for a sequence areThe results of this experiment are shown in Table 1. On the
often interrelated, making it difficult to assess how many individualunmutated data setmap made no errorsinidentifying splice sites. In

M
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terms of gene structure, it had two differences from the gold standardp us. We constructed a test set of 48,441 ESTs by taking every
for a per-sequence error rate of 0.2%. However, in these two cases,i00th human sequence from GenBank. We used each program to
is not clear whether the gold standardserap has the more plausible map these ESTs onto the NCBI human genome version 35, ignoring
alignment. On sequence ENST03543G8AP starts the alignment contigs that were labeled as unmapped. Weananp in batch mode

at position 13, rather than creating an initial exon of 13 nt followedand the server version @At version 31 on the Linux Intel Xeon

by a non-canonical intron. On sequence ENST03388tiAp aligns  platform described previously. Run time for the test set @& and

an initial exon of length 120 with 18 substitutions and 4 gaps, instea@ min for BLAT and 32 min forgmMap.

of creating three exons of lengths 40, 15 and 65, separated by two Because ESTs are of widely differing quality, we assigned each

non-canonical introns. In terms of microexosiAp identified all EST a quality score, which was the percentage identity of the EST
25 microexons in the gold standard that were not adjacent to a shor¢lative to the genome as determined by the higher identity score
intron. between thesmap andBLAT alignments.

Other alignment programs had higher error rates thaap on The results of our comparison are shown in Figure 6. The top plot

the unmutated data set. In identifying gene structure, MGAlign cameshows the number of ESTs at each quality level. There were 1083
closest with 25 wrong sequences (2.8% error rate). Error rates for thESTs that neither program could align to the genome. In addition,
remaining programs ranged from 4.6 to 8.7%. In identifying splicethere were 3472 ESTs (or 7%) that had 60% identity or less by both
sites,BLAT had 10 errors (1.1% error rate), while the other programsprograms. These ESTs are shown as the leftmost vertical bar in the
had error rates between 4.0 and 10.2%. Interestingly, 9 out of theop graph, and were excluded from further analysis. Approximately
10 BLAT splicing errors were associated with microexons, becauséalf (20,935 or 47.7%) of the remaining ESTs had quality scores of
they were missed, predicted with the wrong length, or matched t®8% or more.
the wrong place in the intron. Overall, if we consider the union For each EST, we determined whetl@tap or BLAT provided a
of sequences with gene structure errors and splicing ercorsp better alignment. Because the two programs report scores differently,
had no errors, whereas the next best performer had an error ratee scored all alignments using tBeast scoring system (Altschul
of 5%. etal., 1990), which assigns1 point for matches;-3 for mismatches,
On the mutated data setagap also outperformed other programs. —5 for gap openings and2 for gap extensions, including the first
In terms of gene structure errors, on the 1% data@ehp made  nucleotide in the gap. Because the PSL outpuBpfT includes
errors in 15 sequences (1.7% error rate), while the other progranigtrons in its count of genomic gaps, we ignored any genomic gap
had error rates of 3.6-8.5%. On the 3% datacetyp made gene >10 nt as a putative intron in computing tReasT alignment score
structure errors on 32 sequences (3.6% error rate), while the othéor that program. To disregard minor differences between alignments,
programs had error rates of 7.5-20.8%. The gene structure erroifthe difference between alignment scores was 10 points or less, we
made byMAP typically involved short exons, including microexons considered the alignments to be a tie.
and short missing’&and 3 exons. For example, in the 3% data set, In comparing the ESTSs, there were three possibilities to consider:
the missing end exons were all less than 25 nt. (1) both programs aligned the EST to the same (overlapping) genomic
In terms of splicing errorszmap outperformed the other programs location, (2) the programs aligned them to different locations, and
by even larger margins. On the 1% data setap made no errors, (3) only one program provided an alignment. The first category was
while the other programs had error rates of 5.1-31.4%. On the 3%epresented by 43,407 ESTs (96.5%); the second by 1206 (2.7%);
data setGmaP made errors in 6 sequences for an error rate of 0.7%and the third by 356 (0.8%).
By comparison, other programs had error rates of 6.3-56.7%, due Among the 43,407 overlapping cases, 32,187 (or 74.2%) ESTs
predominantly to shifted canonical splice sites. had a tie score; 8032 cases (18.5%) had a better alignmemi 4w
Running times for the different programs are also shown in Table 1land 3188 cases (7.3%) had a better alignmeritlyr. The middle
The running time foromap was for a single thread. The running graph of the figure shows the counts of ESTs for which the alignment
time for BLAT is shown for client-server mode. Times foxmapr was superior by either program, distributed according to their quality
andBLAT do not include startup time for the server or for memory score. The graph shows that below a quality score of 85%, alignment
mapping of the oligomer index filesGapr requires about 3 min  quality was evenly divided betweemap andsLAT. However, above
to memory map files for the human genome on its first run, buta quality score of 85%gmap provided a better alignment more often
much less time on subsequent runs if pages from the file are stithanBLAT. If we consider the 20,635 ESTs with 98% identity or
resident in memonBLAT requires a somewhat longer time to start more, 18,363 (89.0%) were ties, 1953 (9.5%) favosethp, and
its server.) Running times for the remaining programs measure cDNA&19 (1.5%) favore@LAT.
alignment to their corresponding genomic segments, and include the The bottom graph of Figure 6 shows the non-overlapping cases,
time needed to restart the program for each alignment. The running/hich include the 1206 ESTs aligned to different genomic locations
time for dds/gap2 is extremely long, which probably reflects its reli-and the 356 aligned by only one program. These cases represent
ance upon alignment procedures at the nucleotide level. We also noterelatively small percentage of the ESTs, but as before, above a
that MGAlign shows a substantial increase in running time with thequality score of 85%gMAP provides a better alignment more often
mutated data sets, perhaps reflecting some underlying characteristitansLAT does.
of its handling of substitutions and gaps.
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Experiment 3: ArabidopsismMRNAs

Experiment 2: Human ESTs Observations of nucleotide frequencies around splice sites indicate
Our second experiment assessed the quality of genomic mapping atitht they are species-specific (Senapathgl., 1990). In addition,
genomic alignment on ESTs. We compaxadap with BLAT, the intron lengths have significantly different distributions in different
only other integrated program for mapping and alignment availablespecies, wittCaenorhabditis el egans, Drosophila melanogaster and
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Fig. 6. Comparison of EST alignment quality betweenap andBLAT. The top graph shows the total counts of ESTs at various quality levels. The middle 3
graph shows the counts of ESTs whose genomic location by both programs overlap. Counts of ESTs tastfapoint upward and those that faverat %
point downward. The bottom graph shows the distribution for the relatively few non-overlapping ESTs that either have different genomic locations predicg’gd
by the two programs, or that are aligned by only one program. %
5
. . . . . . . . o
A.thaliana having shorter intron lengths on average ti$aocharo- cDNA and its corresponding genomic segment, with an additional i
mycescerevisiaeand human beings, and lower organisms only rarely1000 nt on each end, using GeneSeqger (5 May 2004 version). We T
having introns of the 1000-nt or longer variety found commonly ran GeneSeqer with the flag ‘-s Arabidopsis’ to use its Arabidopsis-
in higher eukaryotes (Lim and Burge, 2001). Accordingly, cDNA- specific parameters. (In passing, we note that the parameters for ¥
genomic alignment programs may potentially perform differently onGeneSeger that we used for the human ESTs in Figures 4 and 5 N

different species. To assess the performancenfr on a species were ‘-s human -x 30 -y 60’, as recommended by the program’s

different from the previous human experiments, we evaluated it ormuthors.) Running times for th&rabidopsis data set were 42 min

the plantA.thaliana. We comparedimap with GeneSeqer (Usuka for GeneSeger and 1 min favap; these times are not entirely

et al., 2000; Schlueteet al., 2003), which was designed féra- comparable, because GeneSeger needed to be restarted for each

bidopsis, and which has been shown in a previous comparison (HaasDNA—genomic alignment.

et al., 2002) to give the best available performance on that genome. In all but 23 sequences (or 99.5% of the time), the two programs
For our test, we used the data set from that comparison, whiclgave similar gene structures and splice sites. In terms of gene struc-

consisted originally of 5016 full-length cDNAs from Ceres, of which ture, five differences involved short Bxons. GeneSeqer reported

5000 are publicly available in GenBank and 16 are proprietary; fothree 5 exons not reported bymap, with lengths of 9, 6 and 6 nt.

our purposes, we used only the publicly available sequences. We us€iMap reported two 5exons not reported by GeneSeger, with lengths

GMAP to map and align the cDNAs to thgabidopsisgenome (The  of 9 and 8 nt. Two of the sequence differences involveeik®ns. In

Arabidopsis Genome |Initiative, 2000). We also processed eacAY086334, GeneSeqer reports a 9-nt terminal exon not reported by
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AY088806:192..199 AY084920:110..117 AY084877:634..644 (E) AY087941:246..260

GAAGAGT. . . AAGAGTA TACGGTATA. . . TAGGAAC TCTGGGGGTA. . .CAGAAGCACA  GATGGAG. . .CAGGCGAAGGGTGC
[T ===...===1111] [1l=l-===...===111| [TI=T1T>>>. . .5>>——1 | ||| [T l===...===1 11 [l
GAAG 145  AGTA TAC G 126  GAAC TCT GGG 103 GCACA  GATG 1899  GAGAAAAGTGC

GAAGAGTA. . .AAGAGTA TACGGTA. . .TAGGAAC TCTGGGGGTA. . .AAGCACA GATGGAGAAAAGTG. . .AAGGGTGC
[T ]=>>>...5>> ||| [T I>>>0 0 0>>>1 [ LTI S>>0 o>>> 1] FETTITITT s> oss> =11
GAAG 144 AGTA TACG 128 GAAC TCTGGGG 106 CACA GATGGAGAAAA 1898 G TGC

AY086677:257..269 (P) AY086283:12..23 AY086482:167..188 AY086916:75..87 (I)

GAAGGTT. ..GTTG  CTA TTCGGTG. . . GTTATCACAAT ATTGGCA. . .TAGGCAGGTTA  TTTG GTT...TAGATTTTTTT
[l l===...===1--=111 [l l===...=== | ||| [ l===...===111111I] [Tl l=>>>.0>>> [ []]
GAAG 30 GTTGCTA TTCG 2839  GTGTCAAT ATTG 80 GCAGGTTA  TTTGA 555  ATTTCITT

GAAGGTT. . .AAGGTTGCTA TTCGGTGTCAA. . .TCACAAT ATTGGCAAGTT. ..CAGGTTA TTTGGTT. ..TAGATTTT TTT
[Tl I>>>.co>>> ] LI === o===1111 FITTITT >>>.00>>> )] [T1>>>.00.5>> [ 1I=-111
GAAG 27 GTTGCTA TTCGGTGT 2839 CAAT ATTGGCAG 80 GTTA TTTG 555 AATTTCTTT

AY086166:540..553 (P) AY087013:128..138 (L,E) AY086965:140..245 (E)

TTTTGGTTTTGAG. . . TACATCT CGAGGTT. . .TAGGCGGCGGAAG CAAGGTG. . .AAGGTGA---90---GGAGGTA. . .CAGTTTG
[T T ===...===1111 [T=>>>...5>>—=11[1[]1]] [ o I I O I O I O O I R B I e I
TTTAGGTTAC 237 ATCT CGA 230 GGCGGAAG CAAG 545 GTGA---90---GGAG 85 TTTG

TTTTGGTT. . . TAGGTTACATCT CGAGGTT. . . TAGGCGGCGGAAG CAAG---98---GGAGGTA. . .CAGTTTG
[T Is>>coos>>HETTTTT [T I>>>0 0 os>> T ==-=11] FITEITETTEIT I I >>>0 0 os>> 1]
TTTAG 237 GTTACATCT CGAG 230 GCGG AAG CAAG---98---GGAG 630 TTTG

AY086508:109..125 AY088919:167..177 (P) AY086065:48..67 (E)

AGGTGTA. . . TACAGAGAGAGAGAGA ~ TTCCGTA. . .CTTGCAGCCAT TCTCAATCCAATCCAATTC. . . TAGGGTT
[l ===oo===[[11II1] [l [l l===...===] |-II1II FEEEEEEEEEEE 1 ===...===1111
AGGT 74 AGAGAGAGCGAGA ~ TTCC 809  GGA CCAT TCTCAATCCAATTCAG 165  GGTIT

AGGTGTA. . .CAGAGAGAGAG AGA TTCCGTA. . .CAGGGAGTA. . .CAGCCAT TCTCAATCCAATCCAATTCAGGTT. . . TAGGGTT
[Tl >>>c0os>>THHTTTTT==111 [TTI>>>000o>> [ [>>>.0.5>> ] | || [ ]==-=== FETTTITIET N >>>0 0 o>>> 1 1]
AGGT 76 AGAGAGAGCGAGA TTCC 711 GGA 99 CCAT TCT CAATCCAATTCAG 160 GGTT

AY086979:469..507 AY088578:59..97 (E)
TTCTGTG. . . TTTGCCGTCGAAGTCTCCAAAGAAATCGACGAACATCT  CTTCGTCTCCGTCTCCATCTTTGTCTCCGGTG. . . TTCTCATCAGGTAA

[l l===coo===1 1010 L1 TEErrr trer rrrrrrrrr il FEETEEEErrr et el I === ===11="[ Il
TTCT 693 GYCGTYGARGTCTCCMAAGARATCGACGAACATCT CTTCGTCTCCGTCTCCGTCTCCATCTCTC 787 TC CCCGGTAA

TTCTG TGTTGAGGTCTCCCAAGAGATCGACGAACATC. ..AACATCT CTT CGTCTCCGTCTCCATCTTTGTCTCCGGTG. . .CAGGTAA
RN N R RN B R R R [====—- L B B B B S S
TTCTGYCGTYGARGTCTCCMAAGARATCGACGAAC 694 ATCT CTTCGTCTCCGTCTCCGTCTCCATCTCTCTCCCCG 794 GTAA
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Fig. 7. Comparison between GeneSeqger amnhp. These alignments represent all splicing differences between the two programs on a dataset of 5000‘.{>
Arabidopsis cDNAs. Each comparison shows the GeneSeger alignment on top aasiAlealignment on bottom. Notation is the same as in Figure 4, with
the addition of the ‘]’ character to indicate an AT-AC intron, and a compressed view of exons for AY086965. Footnotes after the accession numbers indic%’ce
whether: (I) genomic splice site predictions are identical and difference exists only in the exon—exon boundary, (P) same answers are given when paramﬁer<
are changed in GeneSeger, (E) EST or mRNA evidence is available for the splice site.

|1

GMAP. In AY085991 GMmaP found a 33-nt terminal exon not found by GeneSeger makes an alignment on the wrong strand. Strand selection
GeneSeger. Instead, GeneSeger extends the previous exon throughGeneSeger depends on splice site scores, and the correct strand
a stretch of 2 gaps and 14 mismatches. gives very poor splice sites. For AY086677, the intron shown is
The remaining 16 cases involve differences in splice sites and onghorter than the minimum length that is the default in GeneSeqger;
microexon. The alignments for these cases are shown in Figure as discussed previously, such short introns are atypical. And for
In two of these cases, AY086916 and AY87013, marked in Figure 7AY088919, the 3-nt microexon is shorter than the default minimum
with an (1), the genomic splice site predictions of the two programssize of 5 in GeneSeqer.
are identical, and the differences lie only in the predicted exon—exon In evaluating the remaining differences, we should note that the
boundary. ecotypes of the data set sequences do not necessarily correspond to
In three cases, marked with a (P), a different choice of parameterhe Columbia ecotype used in assembling the genome. Therefore,
allows GeneSeqger to give the same answenasp. For AY08166,  mismatches and gaps may reflect differences in ecotype. GeneSeqer
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is more likely to introduce substitutions and gaps around intronschromosomal location of contigs can be specified either in the header
because it depends upon probabilistic splice site models in additiolines of therasta file or in a separate file. The program can handle an
to the sequence data, whereasp tries to identify the most parsi- arbitrary number of chromosomes, and can concatenate a collection
monious alignment of the given cDNA to the given genomic segmentof contigs to create a special-purpose chromosome (e.g., ‘22U’ for
To help determine which program gives the correct result, weunmapped contigs from chromosome 22). Arbitrary chromosomes
looked for supporting evidence from other ESTs or mRNAs thatmay also be used to include alternate versions of achromosome, such
map to the splice site. Supporting evidence was found for five casess the Celera version of mouse chromosome 16 (Matial, 2002)
marked in Figure 7 with an (E). For AY086065 and AY088578, the or the two available versions of human chromosome 7 (Sckeaskr
evidence appears to support the splice site inadhiep alignment,  2003; Hillieret al., 2003).
whereas for AY084877 and AY087013, the evidence appears to sup- The genomic sequence file represents the genome in one con-
port the GeneSeger splice site. For AY086965, the EST and mRNAinuous sequence with the chromosomes concatenated. It may be
evidence do not resolve the issue of where the cDNA nucleotidestored in a compressed format, which facilitates the reading of the
map to the genome. In this case, we found other sequences with amtire genome into RAM, when sufficient RAM is available. (In addi-
additional 462 nucleotides relative to the test cDNA, whinnap tion, some 32-bit machines limit file offsets to 2 GB, which makes
introduces as a new middle exon and which GeneSeger appendsmpression necessary on these machines for random file access
to its existing middle exon. We also found a full-length sequencefunctions to work properly.) The compressed format allocates 3 bits
AAC50956 in the patent database that GeneSeqer aligns to give thper position, allowing for representation of A, C, G, T, N and X. The
same single 630-nt intron @sIAP. compression scheme stores each block of 32 nucleotides into three
To evaluate the robustness of the two programs to sequence err@2-bit words, with the first two words holding the first two bits of
we created mutated data sets at rates of 1 and 3%, using the samach nucleotide, and the last word holding the third bit (which is set
approach as in Experiment 1. We used only the 4977 sequencemly for non-ACGT letters). If the user chooses not to compress the
for which the two programs agreed on gene structure. The resultgenomic sequence file, the full range of alphabetic characters can of %
of the two programs were roughly equivalent. On the 1% data set;ourse be represented. For the human genome, genomic oligomer S
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GeneSeger had no gene structure errors and shifted canonical splitties require a total of 1.9 GB and the genomic sequence file requires i
sites in 8 sequences. In comparisemaP had 4 gene structure errors 1.1 GB compressed (3.1 GB uncompressed). Once a genome is pro- g
and 3 sequences with splicing errors. The gene structure errors cornessed byoMAp_SeTup, the user may retrieve arbitrary segments §
mitted by GMAP were relatively minor, with missing’%exons of  from the genome using the auxiliary programr-GENOME. The seg- =
lengths 10 and 9 nt and missing internal exons of 6 and 7 nt. ments may be specified by either contig coordinates (if applicable) g

On the 3% data set, GeneSeqer also had no gene structure erramschromosomal coordinates. g
and shifted canonical splice sites in 13 sequenGes\p had gene GMAP can be run on &asTA file containing one or more cDNA Q
structure errors in 9 sequences, and splicing errors in 9 sequencesequences. For a single sequemmesp is generally run in interact- g

As before, the gene structure errorsdayap were minor with miss-  ive mode, in which parts of the genomic files are read directly as =
ing 5 exons of lengths 20, 10 and 9 nt, and 6 missing internalneeded. For larger runs, the user may select a batch mode, in which £
exons, all of length 7 nt or less. The splicing errors dayap the program attempts memory mapping, first on the oligomer file
involved shifted canonical splice sites in 5 sequences, and conveand then on the sequence file. Memory mapping permits fast access
sion of semi-canonical (GC-AG) splice sites to canonical ones irto portions of a file, without having to load the entire file or allocate
4 sequences. dedicated RAM for the entire file. If the attempt at memory mapping
fails on either file (usually due to insufficient memory available), the
program automatically resorts to its interactive mode for that file,
IMPLEMENTATION by subsequently using file access functions. Memory mapping of the
GMAP is implemented in the C programming language. It can beposition file, which needs more frequentaccess, is more important for
compiled and run on any modern Unix system with a 32-bit orspeed than memory mapping of the genome file. Therefore, the min-
higher architecture. We have compiled and run the code successBnum memory requirement forthe programis only 128 MB, although
fully on Digital Alpha Tru64, Silicon Graphics Irix, Sun Solaris, the batch mode works optimally when there is enough memory avail-
Intel Linux and Mac OS X platforms. Source code and documentaable (2 GB or more) to permit memory mapping of the position file
tion for GMAP and associated programs are available for open use atnd to avoid having to swap out parts of that file.
http://www.gene.com/share/gmap A third mode ofGmar allows the user to provide both a genomic
Beforegmap can handle a given genome, it requires that the gensegment and one or more cDNA sequences. In this mode, oligomer
ome be pre-processed, by constructing a genomic oligomer indeidex files are not needed, becauasexp bypasses the mapping step
(consisting of an offset file and a position file) and a genomicand aligns the cDNA sequences to the given segment. This mode
sequence file. These files are generated by an auxiliary progragivesGMap the same functionality as pure genomic alignment pro-
GMAP_SETUP, in a process that can require a few hours to com-grams, and is useful for computing cDNA alignments on the fly for
plete, depending on the size of the genome. However, each releaagarticular genomic region of interest.
of a genome needs to be set up only once, and the resulting binary In processing &AsTA file, GMAP is able to use multithreading,
files are portable across different computer architectures, becausehich works most effectively on machines with multiple pro-
GMAP translates the file contents as necessary for big-endian ancessors. When multithreading is enabled, one thread handles reading
little-endian platforms. of the input, one handles writing of the output alignments, and
The genome may be read in asstA files that contain either one or more worker threads each processes an individual cDNA
contigs in any order or entire assembled chromosomes. Theequence. Our implementation allocates thread-specific memory
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in critical portions to reduce memory contention across threadstelative to the genomic sequence. The compressed alignments may be
Thread-specific memory allocation is particularly critical because theincompressed to their original form using a provided utility program.
underlying representation of a cDNA—genomic alignmeianiap is

a linked list, which requires cells to be added and deleted frequentl

Although this representation facilitates the insertion, deletion an ) . c ) . )
5elat|ve to a given cDNA alignment. Genomic map files consist of a

substitution of subalignments, it can cause contention for hea o ) : . .
memory when multiple threads need to build up their linked lists sim-Set of genomic intervals, with each interval having some annotation,

ultaneously. In turn, heap contention prevents multithreading frorﬁ_”ln optic_JnaI label and an optional tag. They are implemented_as _an
using the full potential of multiple parallel processors. Therefore,Nt€ger interval tree (IIT) (Bucher and Edelsbrunner, 1983), whichis
GMap has dedicated memory allocation procedures that give eacht binary tree structure designed for the rapid retrieval of all intervals

thread its own pool of heap memory as needed, thereby minimizind'at 0verlap a given query interval. IITs permit retrieval of All
heap contention overlapping intervals for a given query interval ik + log, i),

wheren is the total number of intervals in the database.
Additional features The annota}tions in our genomic map files can bt_e of grbitrary
length, meaning that one may store sequences, entire alignments,
In the course of our development and usesefap, we have added o other arbitrary genomic bounds such as cytogenic bands and syn-
several features that extend its functionality. Although a full discus—+enic regions. At our institution, we routinely create genomic map
sion of these features is beyond the scope of this paper, we mentigfles containing previously computed EST alignments (in our com-
them briefly here. pressed format). Such files allow us to rapidly retrieve all ESTs that
overlap a given mRNA on the genome. Another use is the con-
struction of a genomic map file with gene boundaries (potentially

reporting chimeras, or ESTs whoseand 3 ends map to differ- ajanning). The resulting map file can then be used to tell which
ent genomic regions. Although chimeric ESTs are often though ene a given EST belongs to.

to be library artifacts_(Sorek a”‘i' nger_, 2003), some c_)bservation_s Eachinterval in our genomic map files may have a label, and the set
suggest that such chimeras are indicative of translocation event; %% 1abels are also stored in a binary tree structure, allowing one to
cancer (Panagopouletal., 2000). Furthermore, some recent experi- rotrieve an interval by name in logarithmic time. Tags allow one to

mental results have confirmed some novel chimeras detected “s"?'ﬁark and retrieve subsets of intervals. We often use tags to store

genomic alignments of ESTs (Haknal., 2004). _intervals as being on the plus or minus strand of the genome, so we
For a given cDNA,GMAP maintains all alignment results in can retrieve ESTs from a specified strand if desired.
memory during its calculations. When no single alignment is able to

cover a certain fraction of the original length (specified by the userAligning against multiple strains  Our IIT files also make it pos-
with a reasonable value being 60 or 70%)jap finds the pair of  sible to efficiently store and retrieve strain variants for a given
partial alignments that provides the greatest coverage of the queigpecies. Therefore, we have built irtmiAp the ability to map and
sequence. This pair is then reported as the optimal solution to thalign a given cDNA over multiple strains simultaneously. Mapping
chimeric alignment. In some cases, this solution has better coveragever multiple strains requires that we augment our genomic index
than one would get by taking the longest alignment and then tryingable with 24-mers from all strains. Alignment over multiple strains
to align the remaining cDNA. requires us to build a genomic map file that contains strain differ-
ences and their genomic coordinates on a reference strain. At run
Relative alignment of ESTs  Gmap has a mode where a set of ESTS time, when a candidate genomic segment is found in the mapping
can be aligned relative to a reference sequence. In this mode, thﬁep,GMAP usesin Subsequent a|ignment steps not 0n|y the genomic
user providesMap with both a full-lengthmRNA and easta file of  segment from the reference strain but also segments from relev-
ESTs.Gmap then uses the mRNA to identify the appropriate genomicant alternate strains by patching in the alternate strain sequence. In
segment and to mark it with the coding region and codon positionsranking the results;map is therefore able to identify the strain that
Finally, aMaP uses this marked genomic segment to align the ESTspest matches a given cDNA. Given that the NCBI mouse genome
Based on the codon markingsmap can determine whether each (build 33) has sequences from 9 different strains, this feature can
EST overlaps the coding region or lies in an untranslated region ofesult in considerable savings over mapping and aligning repeatedly

an intron. against a complete genome for each mouse strain.
The genomic codon boundaries also enakep to perform a

frameshift-tolerant translation of the EST. This translation maxim-
izes the amount of EST information available to identify putativeDlSCUSSlON
point mutations and polymorphisms, but of course misses potentiallfPur progranGMap is designed to provide a general-purpose solution
true frameshift mutations that may lead to a premature stop codorior cONA—-genomic mapping and alignment. Most existing programs
GMAP compares the translation of each EST against the translatio@ire intended to solve either the mapping task or the alignment task,
of the reference sequence to report a summary of protein sequenbgtnot both. Programs that do provide integrated mapping and align-
variations, including SNPs, amino acid insertions and deletions, anfent, namelyBLAT andsQUALL, are intended primarily for batch or
alternative splice forms. server mode, not for single query or interactive use.

Although one advantage of an integrated mapping and alignment
Compressed alignment format  GMAP can produce alignments ina program over separate programs is convenience, coupling of the
variety of formats, including a compressed format that saves conmapping and alignment tasks also provides functional advantages.
siderable space. The compressed format stores only differenc&senomic alignment programs require the user to supply the correct

)kookup of genomic map information GmMmAP has the capability of
dooking up information in a genomic map file to find information

Identification of chimeric ESTs GwmaP is capable of finding and
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genomic segment to align to, but the correct segment may not bstructures and chimeric ESTs. Accurate and fast genomic mapping
apparent when there are multiple candidate genomic locations. Orend alignment should facilitate our exploration of the genome and
approachtothis problemisto try to improve the ability of the genomicour understanding of the structure, function and evolution of genes.
mapping procedure to find the correct location initially. Another

approach, taken bgmar, exploits the integration of genomic map- ACKNOWLEDGEMENTS
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