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ABSTRACT
Motivation: We introduce gmap, a standalone program for mapping
and aligning cDNA sequences to a genome. The program maps
and aligns a single sequence with minimal startup time and memory
requirements, and provides fast batch processing of large sequence
sets. The program generates accurate gene structures, even in the
presence of substantial polymorphisms and sequence errors, without
using probabilistic splice site models. Methodology underlying the
program includes a minimal sampling strategy for genomic mapping,
oligomer chaining for approximate alignment, sandwich DP for splice
site detection, and microexon identification with statistical significance
testing.
Results: On a set of human messenger RNAs with random mutations
at a 1 and 3% rate, gmap identified all splice sites accurately in over
99.3% of the sequences, which was one-tenth the error rate of existing
programs. On a large set of human expressed sequence tags, gmap

provided higher-quality alignments more often than blat did. On a set
of Arabidopsis cDNAs, gmap performed comparably with GeneSeqer.
In these experiments, gmap demonstrated a several-fold increase in
speed over existing programs.
Availability: Source code for gmap and associated programs is
available at http://www.gene.com/share/gmap
Contact: twu@gene.com
Supplementary information: http://www.gene.com/share/gmap

INTRODUCTION
Mapping and alignment of cDNA sequences—both messenger RNAs
(mRNAs) and expressed sequence tags (ESTs)—onto the genome
has become a central procedure in genome research. The resulting
cDNA–genomic alignments not only reveal the intron–exon struc-
ture of genes, but also facilitate the study of splicing mechanics and
such transcript-based phenomena as alternative splicing, single nuc-
leotide polymorphisms, and cDNA insertions and deletions (Jiang
and Jacob, 1998; Irizarryet al., 2000; Kanet al., 2001, 2002; Zavolan
et al., 2002; Modrek and Lee, 2002; Clampet al., 2003; Wheeler
et al., 2003; Drabenstotet al., 2003; Kimet al., 2004; Floreaet al.,
2005).

To address these needs, programs such asssaha (Ning et al.,
2001) have been introduced to map cDNA sequences to a gen-
ome. Other programs have been developed to align a cDNA to
a given genomic segment, includingest_genome (Mott, 1997),

∗To whom correspondence should be addressed.

dds/gap2 (Huang, 1996),sim4 (Floreaet al., 1998), Spidey (Wheelan
et al., 2001), GeneSeqer (Usukaet al., 2000; Schlueteret al., 2003)
and MGAlign (Leeet al., 2003; Ranganathanet al., 2003). Finally,
some recent integrated programs, such asblat (Kent, 2002) and
squall (Ogasawara and Morishita, 2002), perform both genomic
mapping and alignment.

Despite the availability of these programs, achieving perfection in
cDNA–genomic alignment has been surprisingly elusive. Studies of
existing programs have revealed various types of errors in identify-
ing gene structures and splice sites (Haaset al., 2002). In compiling
a database of EST-based splice sites, researchers have reportedly
had to resort to manual curation of alignments to obtain the cor-
rect results (Bursetet al., 2001). Difficulties generally arise when a
cDNA sequence differs from its corresponding genomic exons, due to
polymorphisms, mutations or sequencing errors. Sequencing errors
are especially prevalent in ESTs, where error rates are estimated to
be 1.5% for high-quality sequences (Zhuoet al., 2003) and 3–4%
overall (Richterich, 1998). Such sequencing errors, especially near
exon–exon junctions, can complicate the detection of splice sites.

One approach to this situation has been to combine information
across various alignments (Birneyet al., 2004; Haaset al., 2003;
Brendelet al., 2004) or even multiple sources of evidence (Allen
et al., 2004) to arrive at a consensus answer. However, since such
programs depend ultimately upon the original solutions generated
by cDNA–genomic alignment programs, advances in the underlying
alignment methodology are still important.

In this paper, we introduce an integrated genomic mapping and
alignment program calledgmap (Genomic Mapping and Alignment
Program). In contrast to programs designed primarily to run in client/
server mode, such asblat andsquall, our program operates as a
traditional standalone program.Gmap provides not only improved
performance over existing programs in terms of speed and accur-
acy, but also enhanced functionality. The functionality provided by
gmap allows a user to: (1) map and align a single cDNA interact-
ively against a large genome in about a second, without the startup
time of several minutes typically needed by existing mapping pro-
grams; (2) switch arbitrarily among different genomes, without the
need for a pre-loaded server dedicated to each genome; (3) run the
program on computers with as little as 128 MB of RAM (random
access memory); (4) perform high-throughput batch processing of
cDNAs by using memory mapping and multithreading when appro-
priate memory and hardware are available; (5) generate accurate
gene models, even in the presence of substantial polymorphisms and
sequence errors; (6) locate splice sites accurately without the use
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of probabilistic splice site models, allowing generalized use of the
program across species; (7) detect statistically significant microexons
and incorporate them into the alignment; and (8) handle mapping and
alignment tasks on genomes having alternate assemblies, linkage
groups or strains.

In the remainder of the paper, we review existing work on
cDNA–genomic mapping and alignment, and describe the methods
underlyinggmap. Next we provide examples of how these methods in
gmap lead to improved splice site and gene structure prediction. Then
we compare the performance ofgmap with existing programs in three
large-scale experiments. In experiment 1, we test for robustness to
sequence error by using test sets of human mRNAs with compu-
tationally simulated sequence errors. In experiment 2, we examine
mapping and alignment quality for human ESTs with naturally occur-
ring sequence errors. In experiment 3, we evaluate the performance
of gmap on another species, namely, the plantArabidopsis thaliana.
Finally, we describe the implementation ofgmap and additional
features provided by the program.

RELATED WORK
One approach to cDNA–genomic alignment has been to use general
sequence alignment programs, such asblast (Altschulet al., 1990),
and then to assemble the resulting hits into gene structures (Gelfand
et al., 1996; Wieheet al., 2001; Milanesi and Rogozin, 2003; Zhang,
2003; Yeoet al., 2004). However, the cDNA–genomic alignment
problem is important enough to warrant programs specialized for
the task. The particular problem that arises in cDNA–genomic align-
ment is the presence of introns, which appear as large genomic gaps
of up to hundreds of thousands of nucleotides in length. Introns have
characteristic patterns at their splice sites, which cDNA–genomic
alignment programs must take into account. About 99% of introns
are bounded on their ends by the canonical dinucleotide pair GT–AG;
the remainder have a semi-canonical dinucleotide pair GC–AG or
AT–AC, or another, non-canonical dinucleotide pair (Bursetet al.,
2000). Probabilistic patterns of conservation are also seen at pos-
itions further away from the intron–exon boundary (Mount, 1981;
Senapathyet al., 1990; Solovyev, 2002).

Existing programs for cDNA–genomic mapping and alignment,
cited in the Introduction, provide a foundation for further advances.
In particular,gmap draws upon three fundamental concepts intro-
duced by earlier programs. First,gmap uses an oligomer index table
for genomic mapping. Second,gmap takes a hierarchical approach
to genomic alignment, by first computing an approximate alignment
and then filling in the details. Finally, like almost all existing align-
ment programs,gmap applies specific methods tailored for detecting
splice sites and for incorporating them into the alignment.

Although essentially all cDNA–genomic mapping and alignment
programs share these fundamental building blocks, they differ in their
particular methods for implementing them; it is these methodological
choices that largely account for differences in their performance.
In the Algorithm section, we provide a detailed description of the
specific methods underlyinggmap; in the rest of this section, we
summarize the basic similarities and differences of our methods
relative to existing ones.

Genomic mapping
Genomic mapping can be accomplished rapidly because of the near-
identity between a cDNA sequence and its corresponding genomic

exons, which manifests as regions of exact matches. Existing pro-
grams exploit this fact either by finding clusters of relatively short
oligomers, such as 11-mers (blat) or 14-mers (ssaha andsquall),
or by using fewer long oligomers. The long oligomer approach is
exemplified by MGAlign (Ranganathanet al., 2003): although it
does not perform mapping on a genomic scale, it initially aligns a
cDNA to a given genomic segment by scanning 20-mers from the
ends of the cDNA. Similarly, rapid mapping is provided by MUM-
mer (Delcheret al., 1999, 2002), which uses suffix trees (Manber
and Myers, 1993) to find long unique matches between genomes,
and MegaBlast (Zhanget al., 2000), which uses 28-mers to identify
sequence matches.

Existing cDNA–genomic mapping programs that use an oligomer
index on a genomic scale begin by pre-loading the index into memory,
which means that these programs not only have a long startup time,
but also require computers with large amounts of dedicated RAM. For
example,squall requires 12 GB of RAM, and the standalone version
of blat requires 8 GB of RAM in order to map a cDNA sequence
onto the entire human genome. The startup time for the standalone
version of blat is several minutes, which makes it inconvenient
for a researcher who wishes to map a single cDNA sequence to a
genome, or who wishes to switch quickly among different genomes
or versions of a genome. Therefore,blat typically runs in a client–
server mode, in which a dedicated server for a particular genome
keeps its genomic oligomer files resident in RAM. Ablat server,
which also requires several minutes of startup time, needs 1.2 GB
of RAM to process the human genome, and must be kept running
continuously to answer queries from a client computer.

In contrast,gmap is a standalone program that has been designed
to handle individual queries rapidly, with essentially no startup time.
Instead of pre-loading the entire oligomer index file into memory,
gmap looks up oligomers as needed directly from the file. Because
access to files is much slower than to memory, our file-based strategy
is enabled by a minimal sampling strategy that attempts to perform as
few oligomer lookups as possible, while still mapping reliably to an
entire genome. Our sampling strategy involves more than scanning
long oligomers from the ends of a cDNA to find a matching pair.
Because our mapping universe is an entire genome, we must safe-
guard against false mapping results from the initial matching pair,
which can arise due to paralogs, pseudogenes and segmental duplica-
tions in the genome (Wheelanet al., 2001; Baileyet al., 2002; Zhang
and Gerstein, 2004). Therefore, reliable matching on a genomic scale
requires additional steps, such as accumulating additional oligomer
evidence beyond the first matching pair; monitoring when the num-
ber of candidate locations has been limited adequately; and sampling
adaptively to extract information from different parts of the cDNA
sequence, including the middle when necessary.

Approximate alignment
An approximate alignment step is necessitated by the large size
of genomic segments, which makes a nucleotide-level align-
ment prohibitively time-consuming, and is therefore used in some
form by virtually every cDNA–genomic alignment program. In
est_genome, approximate alignments are computed by using local
Smith and Waterman (1981) alignments and the resulting seg-
ments are then recomputed with a global Needleman and Wunsch
(1970) alignment. Spidey computes an alignment with increasing
detail by performing successiveblast runs at decreasing stringency
levels.
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In other programs, the predominant strategy has been a ‘seed-
and-extend’ strategy, in which the program first finds significant
oligomer matches between the cDNA and genomic segment, then
extends these seeds to form longer matching fragments, and finally
assembles a selection of these fragments into a collinear chain.
The seed-and-extend strategy is found in a variety of programs,
including those for genome–genome alignment (Chainet al., 2003;
Morgenstern, 1999; Batzoglouet al., 2000; Kent and Zahler, 2000;
Schwartzet al., 2000; Maet al., 2002; Brudnoet al., 2003a,b; Bray
et al., 2003; Kalafuset al., 2004), and constitutes the approach
in several cDNA–genomic alignment programs.Sim4 finds match-
ing seeds of 12-mers in the genomic segment, extends these seeds
by nucleotide-level scoring of matches and mismatches, and then
assembles the resulting ‘exon cores’ through dynamic programming
(DP). MGAlign also applies DP, both to extend its fragments and to
combine local alignments into longer ones.Blat breaks the cDNA
into 500-bp chunks, uses these chunks to create alignment fragments
through a recursive seed-and-extend method, and then uses DP to
stitch together these subalignments.

In contrast,gmap uses an oligomer chaining method that involves
neither seeds nor extensions. Rather, this method finds all matching
8-mers between the cDNA and genomic sequence, and then uses
DP to find an optimal global chain of 8-mers. In this process, exons
are not created explicitly, but instead emerge implicitly from the
globally optimal distribution of 8-mer matches between the cDNA
and genomic segment. Although exon–exon boundaries are defined
only approximately by this method, their location is determined by
both distant alignment information and local information. Oligomer
chaining may extend an exon alignment that otherwise looks locally
unfavorable, or terminate an exon alignment that otherwise looks
locally favorable, when such decisions contribute toward a better
global alignment. We have found that the use of global information
is particularly important in the presence of sequence polymorph-
isms or errors, which can adversely affect local decision-making for
extending fragments.

Splice site identification
Approximate alignment using 8-mers or other fragments generally
does not have the resolution needed at the nucleotide level to detect
splice sites accurately. To recognize splice sites correctly in the pres-
ence of sequence errors, a program must often introduce substitutions
or gaps, shift nucleotides from one end of the intron to the other, or
explore alternate locations for the splice sites.

Existing approaches to splice site identification are based upon
two ideas. The first idea is to apply various heuristics to fix or adjust
the approximate alignment to incorporate a splice site. For example,
Spidey and MGAlign search for splice sites in the overlap between
adjacent exons, and then trim the exons at the highest-scoring splice
site, whereassim4 has an intron shifting procedure that adjusts the
exon–exon junction to find the best pair of splice sites. The other idea
is to use splice site models, such as scoring matrices (Salzberg, 1997;
Brendel and Kleffe, 1998), which model the observed frequency
of nucleotides near the 5′ and 3′ splice sites (Nakataet al., 1985;
Gelfand, 1989) and thereby provide clues about the presence and
location of splice sites.

In contrast,gmap handles this problem by using a formal DP
procedure that we call sandwich DP. Sandwich DP involves two DP
matrices, one for each end of an intron, and attempts to find the best
alignment path across the diagonals of both matrices. Rather than

attempting to fix an existing approximate alignment, the method
computes the whole subalignment in the region surrounding an
intron. This approach guarantees that all possible combinations
of substitutions, gaps and intron shifts are considered, and per-
mits the use of various DP techniques. These techniques include
specialized gap penalties that favor insertions or deletions of tri-
nucleotides (Gotoh, 1999) and band-limited alignment (Sankoff and
Kruskal, 1999), which enables efficient consideration of substitutions
or gaps at a large distance away from the splice site.

Microexons
In addition to the above features,gmap has an explicit procedure
for detecting microexons and incorporating them into the alignment.
Microexons as short as 1 nucleotide in length have found apparent
experimental support (McAllisteret al., 1992; Sterner and Berget,
1993; Simpsonet al., 2000; Carloet al., 2000), and a computational
study suggests that between 0.5 and 1.6% of mRNA sequences in
various species contain microexons (Volfovskyet al., 2003). Such
short exons pose an acknowledged problem for cDNA–genomic
alignment programs (Floreaet al., 1998). A procedure for identi-
fying microexons has been developed by Volfovskyet al. (2003),
and applied in a large-scale study. We further this work by integrat-
ing the detection procedure into the framework of a cDNA–genomic
alignment program, and by adding a probabilistic extension that
ensures that incorporated microexons are statistically significant.

ALGORITHM
In this section, we discuss the methods used bygmap in the con-
text of each of the major components needed for cDNA–genomic
mapping and alignment. Specifically, we describe: (1) a minimal
sampling strategy for genomic mapping, (2) oligomer chaining for
generating approximate gene structures, (3) sandwich DP for identi-
fying splice sites, and (4) microexon identification with statistical
significance testing.

Minimal sampling strategy
For genomic mapping,gmap uses a sampling strategy designed to
minimize the number of oligomer lookups needed to map a cDNA
reliably to the genome. Our minimal sampling strategy is based
upon the use of long oligomers to achieve high specificity, combined
with an adaptive sampling scheme to utilize mapping evidence from
different parts of the cDNA sequence.

As discussed previously, the rationale for using long oligomers is
their exponentially greater specificity in the genome, which means
that mapping can be performed with few oligomer matches. Our
choice of 24 as an oligomer length is guided by our own study of
oligomer uniqueness in the human genome, as shown in Figure 1.
This graph, based on the unmasked portion of the NCBI human gen-
ome (build 29), shows the percentage of the observed oligomers
of various lengths that are unique in the genome. For example,
among all 11-mers in the genome, only 0.1% of them have a
unique position in the genome. Likewise, among all 14-mers, only
22.5% specify a unique position in the genome. On the other hand,
when the oligomer length is 20 or more, the percentage of oli-
gomers with a unique genomic location reaches an asymptotic level
of 96–97%.

Our implementation of 24-mer lookups on a genomic scale
requires some adaptation of the index table scheme ofssaha (Ning
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Fig. 1. Distribution of oligomers of various lengths in the masked region
of the human genome (NCBI build 29). The horizontal axis represents vari-
ous oligomer sizes from 11 to 25. The total space of possible oligomers
increases exponentially, as shown by the exponentially increasing line. For
each oligomer size, counts of all overlapping oligomers in the masked part
of the human genome are shown by the top line, and the counts of distinct
oligomers are shown by the topmost sigmoid line. Distinct oligomers can
be divided into unique oligomers, which occur once (shown by the sigmoid
line with percentages), and repeated oligomers, which occur more than once
(shown by the bottom line).

et al., 2001). In that scheme, a position file contains the observed pos-
itions of oligomers in the genome, and an offset file contains pointers
to the position file to indicate where a block of positions begins and
ends for a given oligomer. Because this offset file contains an entry
for each possible oligomer, its size grows exponentially with the oli-
gomer length. In fact, 14-mers represent the current practical limit
for the ssaha data structure, because the corresponding index file
occupies 1.1 GB. Extending this indexing scheme to 24-mers would
yield a sparse offset file of 424 = 281 trillion 32-bit entries, which
would be prohibitively large to store.

Therefore, in our initial implementation ofgmap, we tried a hash-
ing scheme instead, where the space of 24-mers is mapped onto a
space of 12-mers using a hash function. If a given 24-mer has a match
somewhere in the genome, an entry for the 24-mer can be found in
the expected hash bin. This entry then provides the appropriate offset
into the position file.

Although this hashing scheme worked reasonably well, we sub-
sequently found a more efficient solution by using a double lookup
scheme, which breaks up the problem of finding a 24-mer into the
problem of finding two 12-mers. In other words, we implement the
ssaha data structure for 12-mers, with the requirement that entries
in the position table be pre-sorted in ascending numeric order within
each oligomer. To find the positions for a given 24-mer, we look up
two lists of genomic positions, one for the initial 12-mer and one
for the terminal 12-mer. The desired set of 24-mer genomic loca-
tions is obtained by finding pairs of entries in these two lists that are
separated by 12 nucleotides. The reason for pre-sorting the genomic
positions within each oligomer is to make this procedure run in linear
time with the number of genomic positions, rather than quadratic.

The size of the position file is determined by the genome size
and by how often oligomers are sampled in the genome. Although
minimal coverage of the genome can be achieved by sampling all

non-overlapping 12-mers in the genome, an overlapping sampling
interval provides increased resolution, but at the cost of a larger
position file. An additional advantage of overlapping sampling inter-
vals in our scheme is that it permits lookups of oligomers other
than 12-mers and 24-mers. For example, if we store 12-mers at an
overlapping interval of 6 (which is our default), we can determ-
ine the genomic location of oligomers of length 12, 18, 24, and so
on. These intermediate-length oligomers can be useful in genomic
mapping. The use of 18-mers can give additional sensitivity for diver-
gent sequences, such as in the cross-species genomic mapping of
mouse cDNAs onto the human genome, and vice versa. In addition,
short cDNA sequences often have too few 24-mers for reliable gen-
omic mapping. In these cases, the program uses smaller oligomers:
18-mers if the cDNA is between 40 and 80 nt, and 12-mers if it is
less than 40 nt.

In addition to using highly specific 24-mers,gmap employs an
adaptive sampling scheme designed to utilize mapping information
from different parts of the cDNA sequence. The sampling process
begins by scanning both ends of the cDNA sequence, and monitoring
the results until a pair of 24-mers match to approximately the same
location in the genome. The definition of ‘same location’ depends
upon the length of the query cDNA, with an allowed genomic expan-
sion of 1000 times the query length, subject to a default upper limit
of 1 million nucleotides. Therefore, the program will not attempt to
predict a long intron for a very short EST.

To avoid false localizations from a fortuitous pair of matches to
the genome, the program continues to sample beyond the first pair
of successful hits, in order to accumulate evidence of other pos-
sible localizations in the genome. This amount of further sampling is
determined both by a minimum distance (default 48 nt) and by a min-
imum number of additional successful matches (default 3) required.
If this process yields a limited number of genomic locations, the
mapping process terminates.

On the other hand, if there are a large number of candidate genomic
locations, thengmap begins a sampling process that uses informa-
tion from the middle of the cDNA sequence. This sampling process
is performed iteratively, with the sampling interval halved in each
round. At each sampling interval, the program looks for clusters on
the genome with a high concentration of matches, with the provi-
sion that genomic positions be collinear with the cDNA positions.
Sampling terminates when the correct genome location is resolved
to a limited number of good candidates. This determination is made
by setting a threshold at 70% of the number of matches in the best
cluster, and requiring that only a limited number of clusters (currently
defined as 10 or fewer) are above this threshold.

For each candidate cluster of 24-mers, the program extracts the
corresponding segment from the genome, with the correct strand of
the genome determined by the orientation of the matching 24-mers.
To extend the genomic segment to regions that may be relevant for
further alignment at the oligomer and nucleotide level, the program
looks up the genomic positions of the nearest 12-mers that match to
the ends of the cDNA sequence.

Oligomer chaining
For approximate alignment, oligomer chaining attempts to find a path
of 8-mers that match between the cDNA sequence and each genomic
segment found in the mapping step. The procedure is illustrated in
the top part of Figure 2. Instead of the standard DP paradigm, which
uses a matrix to align two sequences, oligomer chaining uses an
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Fig. 2. Oligomer chaining and nucleotide-level alignment. The top part of the figure shows oligomer chaining. The horizontal axis represents positions on the
cDNA sequence. Each cDNA position may have one or more matches of 8-mers to the genomic segment, represented by a vertical stack of cells. For each
cell, the DP procedure looks for an optimal previous cell, as represented by thin diagonal lines between cells. The highest-scoring chain of 8-mer matches,
represented by a thick line, describes the optimal approximate alignment. This alignment may contain jumps in cDNA or genomic coordinates, due to introns,
cDNA insertions or sequence differences. These jumps are resolved by various nucleotide-level alignment procedures, represented in the bottom of the figure
by various DP matrices. Sandwich alignments bridge large coordinate jumps across introns (horizontal dashed line) or long cDNA insertions (vertical dashed
line). The existence of short exons is resolved by an exon testing procedure that compares alignments with and without the short exon.

equivalent but more efficient representation in the form of an array of
linked lists. Each position in the array corresponds to an overlapping
8-mer in the cDNA sequence, and each 8-mer has a linked list of
positions in the genomic segment where that 8-mer is found. These
linked lists are represented in the figure as a vertical stack of cells
at each cDNA position. Each cell also contains placeholders for the
optimal subscore to that point and for a pointer to the best previous
cell that produced the optimal subscore.

The array of linked lists is generated by first pre-scanning the
cDNA for overlapping 8-mers and noting which 8-mers are present,
and hence relevant. This pre-scan prevents unnecessary work later,
because most of the 8-mers in the longer genomic sequence are irrel-
evant. Then the algorithm scans the genomic segment for relevant
8-mers and adds their genomic positions to a list maintained for each
relevant 8-mer. Finally, the algorithm scans the cDNA again, making
a copy of the appropriate position list for each element of the array.

After building this data structure, oligomer chaining proceeds with
a DP procedure that assigns a subscore and pointer to each cell,
starting from the beginning of the cDNA sequence. For each cell,
the algorithm looks backward to cells at previous cDNA positions
to identify the cell that both is consistent and generates a maximal
score to the given cell. A previous cell is consistent if its genomic
position is lower than that of the given cell, which enforces collin-
earity of the cDNA and genomic sequences. The score for the cell
is the score of the previous cell plus 1 to indicate the length of the
chain. Because introns will cause 8-mers in the cDNA not to match,
the algorithm compensates for such cases by adding enough points

to ensure that local extension does not gain an unwarranted advantage
over an intron.

One cost of our approach is greater computational complexity than
one based on larger fragments. As described so far, oligomer chain-
ing is O(m2g2), wherem is the length of the cDNA andg is the
average number of cells per linked list, which is generally propor-
tional to the length of the genomic segment. (A total ofmg cells
must be processed, and at each cell the algorithm must look back at
the previous set of cells processed.) In order to reduce the complex-
ity to O(mg2), we impose a sufficiency limit on the look backward.
Note that this limit applies only to the cDNA sequence coordinates;
there is no limitation on the look backward in genomic sequence
coordinates. The sufficiency limit has a default value of 60, which
expresses our calculated expectation that we should find at least one
matching 8-mer between the cDNA and genome within that distance,
even accounting for extremely low sequence quality. By using prob-
ability calculations based on finite-state automata (Atteson, 1998),
we estimate that if the sequence error rate is 5%, then the chance of
failing to have an error-free stretch of 8 nucleotides out of 60 total
nucleotides is 3.8× 10−6.

The pointer and optimal subscore for a given cell are based on
the best solution found within this sufficiency limit. However, a
cDNA sequence may have a local concentration of mismatches or
gaps that precludes 8-mers from being identified in a particular
stretch. Therefore, if no matching 8-mer is found within the suf-
ficiency limit, the algorithm will continue looking backward as far
as needed to find a match. This provision allows the algorithm to
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Fig. 3. Sandwich DP for identifying splice site boundaries. This solution corresponds to an intron in EST sequence BF846255, shown in the middle of Figure 4.
Two alignment matrices are shown. The cDNA sequence is shown on the common vertical axis, and the 5′ and 3′ genomic ends of the intron on the horizontal
axis of each matrix. The two matrices are solved ‘outside in’, as shown by the direction of the arrows. The optimal solution, shown in bold, is found by adding
terms in adjacent rows, plus a reward for canonical introns, as indicated by the boxed GT–AG pair.

cope with sections of cDNA that have extremely poor sequence
quality.

In order to reduce the complexity further toO(mg), we note that
one cell in the linked list for a given 8-mer usually has a score that
dominates over the scores of other cells in the list. Domination occurs
if the best score exceeds the second best score by more than the intron
compensation discussed previously. In such cases, the dominating
cell can be marked by a pointer, so that downstream cells looking
backward to the given 8-mer need consider only that cell.

Finally, the overall approximate alignment is obtained from the
optimal path of cells, which represents a set of matches between
8-mers in the cDNA and genomic segment. This path of 8-mers is
converted into an alignment at the nucleotide level, using a linked
list representation, in preparation for alignment procedures at the
nucleotide level.

At this point in the algorithm, the program can assess the quality of
the cDNA against the genome, based on the number of short breaks
in the alignment. This quality information can be useful in guiding
the rest of the algorithm. The fraction of such short breaks relative
to the total alignment length is defined to be the defect rate, and
is used to classify the cDNA sequence as being of high (defect rate
<0.3%), medium (0.3–1.4%), or low quality (>1.4%). This classific-
ation enables appropriate parameters for nucleotide-level alignment
to be selected automatically, so that substitutions and gaps are more
likely to be introduced for low-quality sequences, and less likely for
high-quality sequences.

Sandwich DP and other nucleotide-level alignment
Gmap uses a procedure we call ‘sandwich DP’ to compute sub-
alignments around introns. Actually, sandwich DP can be used to

handle not only introns, but also long cDNA insertions relative to
the genome, which occur rarely. For introns, the jump in genomic
coordinates is much greater than that for cDNA coordinates; for
cDNA insertions, the opposite is true. For simplicity, we describe
primarily the intron case, as shown in Figure 3, in which the cDNA
sequence is placed on the common vertical axis and the genomic
ends of the intron are placed on the horizontal axis. To handle cDNA
insertions, the procedure switches the assignments of cDNA and
genomic sequences to the two axes.

In sandwich DP, the goal is to find an optimal path from the upper
left corner to the lower right corner. For the intron case, this path
bridges the coordinates for the cDNA sequence but allows genomic
coordinates to jump across the intron. To find the optimal path, each
matrix is scored ‘outside in’ by the usual Needleman and Wunsch
(1970) procedure, which enforces an alignment to the ends of the
intron. However, once scoring is complete, we cannot proceed dir-
ectly to backtracking, because a single optimal score is not directly
available. Rather, we must find the optimal combination of scores
between the two matrices by evaluating adjacent rows (representing
adjacent cDNA positions) and pairs of columns within those rows.
Testing each adjacent pair of rows is equivalent to shifting nucleotides
across the gap, whereas selecting different columns is equivalent to
trying different splice sites. The algorithm selects the combination
that produces the maximum combined score, including a reward if
the solution results in a canonical or semi-canonical splice site.

Sandwich DP is one of several nucleotide-level alignment proced-
ures used to fill in gaps in the approximate alignment. In addition
to introns, other types of sequence differences can cause 8-mers
not to align in the oligomer chaining procedure and thereby yield
discontinuities or jumps in the cDNA or genomic coordinates in the
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alignment. Each of these types of coordinate jumps is handled by an
appropriate nucleotide-level procedure, as shown in the bottom part
of Figure 2. These procedures are applied in a particular order in four
passes through the alignment.

In the first pass, the algorithm solves regions where the cDNA
and genomic coordinate jumps are approximately equal, indicat-
ing the presence of small sequence differences such as mismatches
or short insertions or deletions. The program fills in these gaps
with global Needleman–Wunsch DP, which enforces alignment to
both ends.

In pass 2, the algorithm validates the existence of short exons,
defined as those with fewer than 80 nt (but at least 8 nt, which is
the minimum resolution of oligomer chaining). This step is neces-
sary because an approximate alignment from oligomer chaining can
contain small islands of 8-mers, as small as a single isolated 8-mer,
which may represent either a true short exon or a spurious match. If
the match is spurious, a better alignment should result by splitting
the short exon and merging the halves into adjacent exons. There-
fore, to decide whether a short exon does indeed exist, the algorithm
attempts to align the region under the two assumptions that the short
exon is present (meaning two introns and a middle exon) or that it
is absent (meaning one intron). It then merges in the subalignment
that provides the better alignment score.

In pass 3, the algorithm fills in large relative jumps in coordinates,
where the jump in genomic coordinates is much greater than that of
the cDNA jump, or vice versa. The former situation is due to introns,
and the latter, which occurs rarely, is due to long cDNA insertions.
The algorithm handles these jumps by applying the sandwich DP
procedure described previously.

In the fourth and final pass, the algorithm extends the 5′ and 3′
ends of the cDNA sequence, by using DP for the sequence ends.
End sequence alignments are computed by constraining one end of
the alignment and allowing the distal end to terminate at an optimal
stopping point. This procedure is implemented by a modified Smith
and Waterman (1981) local alignment, in which we choose an optimal
score from anywhere in the matrix for backtracking, but do not reset
negative scores to zero during the scoring procedure. If all scores in
the matrix are negative, the end is not extended.

Each of the above DP procedures employs a band-limited search
through the score matrix (Sankoff and Kruskal, 1999). Such an
approach is relatively sound because oligomer chaining bounds the
solution well from a global perspective, leaving only small sequence
edits to be performed. Another implementational detail is that before
each nucleotide-level DP procedure is performed, some of the nucle-
otide matches on each end of the coordinate jump must be ‘undone’
or ‘peeled back’. The resulting margin gives the nucleotide-level DP
procedure freedom to find a better alignment than that found by the
coarser oligomer chaining procedure.

Our DP procedures allow us to handle codon insertions and dele-
tions gracefully by an appropriate gap penalty function. We use a
‘step function’ gap penalty, where instead of a per-nucleotide exten-
sion as in the usual affine gap penalty, we have a per-codon extension
penalty. This per-codon penalty is equal for gaps of 1, 2 and 3
nucleotides, likewise for 4, 5 and 6 nucleotides, and so on. As a
result, our algorithm has a preference for insertions and deletions
that are multiples of 3. Similar gap penalties that favor multiples of
3 have been used in other programs (Gotoh, 1999). The preference
for trinucleotide gaps reflects selection pressure at the protein level
to avoid frameshifts and preserve the coding region.

The above nucleotide-level procedures are tried under the two
assumptions that the cDNA sequence is sense or antisense, and the
cDNA direction is determined, if possible, based on the higher align-
ment score in terms of canonical splice sites, matches, substitutions
and gaps. When multiple candidate alignments are found, due to mul-
tiple genomic segments found in the mapping step, the candidates
are ranked and reported according to their alignment score.

Probabilistic microexon identification
The problem of detecting microexons is challenging because merely
changing parameters to identify them often backfires, resulting in
spurious extra exons in the middle of introns. The problem is par-
ticularly acute for long introns, which have a greater opportunity
to have an exact match by chance to a given short oligomer. In such
cases, a program must decide whether extra nucleotides in the cDNA
are due to a microexon or to an insertion in the adjoining exons.

Gmap has an explicit procedure for finding microexons, based on
the method by Volfovskyet al. (2003). It applies this procedure in
pass 3 of nucleotide-level alignment when the initial alignment of an
intron is neither canonical nor semi-canonical, and when the align-
ment surrounding the intron has more than an acceptable number of
mismatches or gaps (0 for a high-quality sequence, 2 for medium
and 3 for low). Also, we require that a microexon be reported only if
it matches perfectly to the genomic sequence and is surrounded by
two canonical introns.

When these conditions are met, the program calculates a lower
bound on the microexon length that satisfies a given statistical signi-
ficance level (p <0.01 by default). The calculation imposes a higher
minimum length requirement for a microexon in a longer intron, to
offset its higher likelihood of an exact match by chance.

We assume a simple model where nucleotides in an intron of
lengthL are generated independently with uniform distributions of
1/4 probability per base. For a microexon withe nucleotides, the
probabilityp that the microexon matches somewhere in the intron
and is surrounded by two canonical introns is

p = 1 − [
1.0− (1/4)m

]L
(1)

Note that herem = e + 8 to include the exon lengthe as well as the
8 positions for the two required canonical dinucleotide pairs. If we
solve this equation form, we obtain

m = − log(1− (1 − p)1/L)

log(4)
(2)

Therefore, given an intron lengthL and an upper limit on the statist-
ical significancep, gmap calculates the lower limit form, and then
searches for microexons that are of sizee = m − 8 or longer.

Like the Volfovsky method, our procedure searches for GT and
AG pairs in the 5′ and 3′ ends surrounding the intron, but considers
only those that satisfy the calculated lower bound on the microexon
length. Also, our procedure looks only within 12 nt of the align-
ment boundaries rather than the 30 nt by Volfovsky, because longer
microexons would have been identified by oligomer chaining. Poten-
tial microexons are then scanned across the intron using Boyer and
Moore (1977) sublinear-time string matching, and accepted if they
are surrounded by the requisite AG and GT dinucleotide pairs.

Similarly, in pass 4,gmap can find statistically significant micro-
exons at the 5′ and 3′ ends of the alignment.Gmap is very
conservative in applying this procedure, requiring a high-quality
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Fig. 4. Splicing errors. This figure shows alignments generated by various programs around introns in three sequences. Alignments have been formatted in a
uniform style. The first column shows a canonical intron (marked by ‘>’) from an EST with one sequence difference nearby: a single gap (marked by ‘−’).
The second column shows a canonical intron from an EST with two gaps nearby. The third column shows a non-canonical intron (marked by ‘=’) with no
mismatches or gaps. Alignments have the genome sequence on top and the cDNA on the bottom, with the cDNA in its forward direction. Numbers below each
intron indicate its length in nucleotides. Other overlapping ESTs are listed as evidence for the alignment found bygmap.

sequence, an adjacent canonical intron, and the remaining sub-
sequence to match exactly to the genome. When these conditions
are met, the program tests each candidate microexon of lengthe

in the remaining end sequence from longest to shortest. For each
microexon length, the program computes the maximum lengthL of
genomic sequence for the microexon to be statistically significant:

L = log(1− p)

log(1− (1/4)m)
(3)

In this case, the number of matches ism = e + 4, to account for the
microexon lengthe and the canonical dinucleotide pair in the intron.
This amount of genomic sequence is then scanned for an exact match
of the microexon using a Boyer–Moore search, and the microexon
is accepted if it yields a canonical intron.

RESULTS

Examples
The methods employed bygmap enable it to handle certain types
of alignment problems that pose challenges for existing programs.
Some illustrative examples of these problems are shown in Figures 4
and 5.

Figure 4 shows some cases of splice site detection in the presence of
sequence error. For the first EST, which has one sequence difference
relative to the genome, the canonical intron is recognized by five
out of seven programs. However, for the second EST, which has

two sequence differences, onlygmap and sim4 can recognize the
canonical intron. Programs can be overly liberal in identifying introns
as being canonical, thereby resulting in false positives. This is seen
as the third EST, in whichSim4 appears to overcall a canonical intron
by introducing gaps of 5 nt in an mRNA that otherwise has perfect
sequence identity to the genome.

Another class of errors seen in cDNA–genomic alignment involves
gene structure, manifesting as missing or extra exons, as illustrated
in Figure 5. The first example shows an apparent 6-nt difference
between the cDNA and the genome.Gmap and GeneSeqer inter-
pret this as a microexon surrounded by two canonical introns. Other
programs give less plausible alignments, involving a combination of
non-canonical introns, 4-nt microexons, and nucleotide substitutions
and gaps. The second example in Figure 5 shows that many align-
ment programs truncate their alignment prematurely in the presence
of substitutions or gaps. In this example,gmap and GeneSeqer are
able to extend the alignment, thereby revealing a canonical intron and
an additional exon. The third example in Figure 5 shows how initial
and terminal exons can be difficult for some alignment programs to
find. This EST has a final 31-nt exon that is missed by various pro-
grams, which try instead to extend the alignment locally. Although
one must generally be cautious in making inferences from ESTs with
sequence errors, analysis of a rare gene of interest may depend on
maximizing information from a single EST. In these examples, the
predicted exons are indeed supported by other sequences, as listed
in the figure.
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Fig. 5. Gene structure errors. This figure shows alignments for three additional ESTs. Notation follows that of Figure 4, with the addition of the character ‘#’,
which indicates a dual break in the alignment in both the genome and the cDNA sequence. The lengths of the two breaks are indicated above and below the
alignment.

Experiment 1: Human mRNAs
We performed a comparison ofgmap with several existing genomic
alignment programs on full-length human mRNAs. For this analysis,
we used the 1 November 2004 release of Ensembl mRNAs, and
extracted the 885 sequences annotated to be on chromosome 22. We
ultimately excluded two sequences from this set, because subsequent
runs of bothgmap andblat failed to map them to chromosome 22.
Sequence ENST0355936 was placed bygmap on chromosome 2
and byblat on chromosome 7, and sequence ENST0357004 was
placed bygmap on chromosome 1 and was not localized byblat to
anywhere on the human genome.

The Ensembl data set contains annotated exon boundaries, which
we used as a gold standard. Our data set contained a total of 8634
exons. Some exons were extremely short, with 41 exons having
lengths of 3–10 nt. In addition, some inter-exon regions were also
extremely short, with 125 having lengths of 1–7 nt. These regions
between exons are annotated as ‘introns’, although some programs
may annotate these simply as small cDNA deletions. In fact, experi-
mental evidence (Wieringaet al., 1984) suggests that introns require
at least 70 or so nucleotides for splicing to occur, and computational
evidence (Yuet al., 2002) provides evidence for a species-specific
minimal intron length. For 16 of the 41 short exons, there was a
short intron immediately preceding or following. Further inspection
of these 16 short intron/exon patterns and comparison of the align-
ments with available EST evidence suggests that these patterns may
have been introduced computationally in order to maintain the read-
ing frame. The remaining 25 short exons surrounded by introns of
typical lengths may be considered to be true microexons.

To test how robust alignment programs are to sequence error, we
generated two additional test sets by computationally introducing
random mutations at rates of 1 and 3%. A similar mutation paradigm
has been used to evaluateab initio gene structure prediction pro-
grams (Burset and Guigó, 1996). For each position in an mRNA
sequence, we generated a random number that determined, with
1 or 3% probability, whether a mutation would be introduced at that
position. If a mutation event was selected, we generated an addi-
tional random number that determined whether the mutation was a
substitution, insertion or deletion, with 80, 10 and 10% probabilit-
ies, respectively. These probabilities are the same as those used by
Tammi et al. (2003) in their simulation of observed errors in shot-
gun sequences. For substitution and insertion events, we generated
a nucleotide randomly, without regard to the original nucleotide.
Therefore, the original nucleotide may have been resubstituted in
the given position, resulting in no change.

We provided each of the three mRNA data sets as input to the fol-
lowing programs that were available to us and which were designed
to run primarily on vertebrate mRNAs:blat version 31 (31 October
2004), dds/gap2 version 30 October 2003, MGAlign version 1.3.7
(25 September 2003),sim4 version 21 September 2003, Spidey
version 1.35 andgmap. Parameters used were all default, without
any additional flags, with the following exceptions: forsim4, we
used the flags ‘A= 4 P= 1’, which prints the alignment and removes
poly-A tails (which are not present in these data sets anyway); for
Spidey, we used the flag ‘-p 0’, which prints the summary and align-
ment; and forgmap, we used the flags ‘-BA’ to indicate a batch run
that pre-loads genomic files into RAM and prints the alignment. For
dds/gap2, we ran the three programs dds, ext and gap2, each without
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Table 1. Results of aligning 883 Ensembl mRNAs from chromosome 22

Condition Time Gene structure errors Splicing errors Union
Mis5 Mis3 MisM MisI Extr Mult Total Shift Over Mult Total

gmap, 0% 1:12 1 0 0 0 0 1 2 0 0 0 0 0
gmap, 1% 1:20 3 6 3 0 2 1 15 0 0 0 0 15
gmap, 3% 1:30 10 7 8 3 2 2 32 5 1 0 6 34
blat, 0% 6:40 20 9 8 1 1 2 41 4 0 6 10 47
blat, 1% 6:34 21 10 8 5 24 7 75 71 1 13 85 141
blat, 3% 6:29 23 12 6 12 99 32 184 172 0 54 226 331
dds/gap2, 0% 8:25:54 3 9 20 17 6 22 77 47 0 10 57 93
dds/gap2, 1% 8:23:21 4 10 20 14 5 20 73 86 0 17 103 135
dds/gap2, 3% 8:01:09 1 12 21 14 6 20 74 163 0 40 203 227
MGAlign, 0% 2:45 1 0 13 2 5 4 25 31 1 3 35 45
MGAlign, 1% 1:26:24 2 0 13 5 6 6 32 132 1 43 176 188
MGAlign, 3% 2:47:01 4 1 12 13 26 10 66 213 1 160 374 400
sim4, 0% :38 4 0 18 20 1 10 53 37 1 1 39 64
sim4, 1% :41 6 1 18 22 2 12 61 42 2 1 45 74
sim4, 3% :39 12 1 18 23 2 11 67 52 2 2 56 89
Spidey, 0% 1:26 16 2 21 11 2 18 70 54 0 36 90 112
Spidey, 1% 1:24 15 2 21 11 1 14 64 196 0 81 277 299
Spidey, 3% 1:29 13 3 19 11 5 19 70 227 1 268 496 517

Entries indicate the number of sequences with errors of various types. Key: Mis5, Mis3, MisM and MisI= missing 5′, 3′, microexons, and other internal exons; Extr = extra exon;
Shift = shifted canonical intron to another genomic position; Over= overcalled canonical intron; Mult= multiple errors of a given class. The final column shows the union of all
sequences with some error. Run times are in (hours:minutes:seconds) are for mapping and alignment byGMAP andBLAT, and for alignment by the other programs.

any additional flags. For pure alignment programs, we provided the
genomic segment corresponding to each mRNA, with an additional
1000 nt on each end. We tested all programs on an Intel Linux
machine with 2 Xeon processors at 2.4 GHz with 2 GB of RAM
running RedHat Linux.

For each data set, we developed a gold standard set of exon–exon
boundaries in the cDNA. The gold standard for the unmutated data
set was derived from the exon coordinates provided by Ensembl.
Annotations were added to indicate whether the corresponding
introns had a canonical or non-canonical pair of dinucleotides, and
to mark short exons (10 or fewer nucleotides) and short introns (7
or fewer nucleotides). Gold standards for the mutated data sets were
computed by shifting the exon–exon boundaries accordingly when
they followed insertions or deletions.

We parsed the output of the different programs into a uniform
format that contained the computed exon boundaries, plus the dinuc-
leotide pair for each intron. We then compared the computed exon
boundaries with the gold standard to count errors of various types.
Our comparison involved a DP procedure to find corresponding
exon–exon boundaries between the computed and gold standard gene
structures. This procedure was relatively simple to implement, but
was needed to score results for the mutated data sets, which caused
programs to frequently miss exons or include extra ones, and to shift
splice sites by various distances. Complete input and output files
for this and the other experiments are available as Supplementary
Material.

We classified errors into two classes—gene structure errors and
splicing errors—and counted the number of mRNAs for which
an error occurred. Counting on a per-sequence basis makes sense
because splicing and gene structure decisions for a sequence are
often interrelated, making it difficult to assess how many individual

errors in a sequence were actually committed. Hence, a sequence
that had more than one error of a given class was counted as a single
sequence error, with such cases being placed into a ‘multiple error’
category. Gene structure errors occurred in cases where the genomic
alignment program missed one or more 5′, 3′ or internal exons (either
microexons or longer ones), or inserted an extra exon. Splicing errors
were counted when a program shifted either end of a gold standard
canonical intron to a different genomic position, or when it shifted
either end of a gold standard non-canonical intron to create a canon-
ical intron. We call the latter error ‘overcalling’ a canonical intron.
In the gold standard, we found 2 non-canonical introns that could
be converted to a canonical one with 0 substitutions or gaps; 38 that
could be converted with 1 substitution or gap; 6 with 2 substitutions
or gaps; 11 with 3 substitutions or gaps; and 3 with 4 substitutions or
gaps. We excluded these introns from being counted as either shifting
or overcalling errors, since many programs are designed to convert
these non-canonical introns into canonical ones. In particular, on the
unmutated data set,sim4 converts all of the above non-canonical
introns into canonical ones, andgmap converts all that involve 0, 1
or 2 substitutions or gaps, or that involve 3 contiguous gaps.

Because we evaluated gene structure and splicing errors separately,
a sequence could have been counted as an error in each class, which
occurred especially when the errors were interrelated. For example,
failure to recognize an internal exon, especially a microexon, can
lead to an error in finding the correct splice site. (On the other hand,
failure to recognize a 5′ or 3′ exon would not lead to a splicing
error, since no intron would have been predicted.) Because the two
error classes are not mutually exclusive, we also tallied the union of
sequences with one or more errors of any type.

The results of this experiment are shown in Table 1. On the
unmutated data set,gmap made no errors in identifying splice sites. In
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terms of gene structure, it had two differences from the gold standard,
for a per-sequence error rate of 0.2%. However, in these two cases, it
is not clear whether the gold standard orgmap has the more plausible
alignment. On sequence ENST0354373,gmap starts the alignment
at position 13, rather than creating an initial exon of 13 nt followed
by a non-canonical intron. On sequence ENST0338911,gmap aligns
an initial exon of length 120 with 18 substitutions and 4 gaps, instead
of creating three exons of lengths 40, 15 and 65, separated by two
non-canonical introns. In terms of microexons,gmap identified all
25 microexons in the gold standard that were not adjacent to a short
intron.

Other alignment programs had higher error rates thangmap on
the unmutated data set. In identifying gene structure, MGAlign came
closest with 25 wrong sequences (2.8% error rate). Error rates for the
remaining programs ranged from 4.6 to 8.7%. In identifying splice
sites,blat had 10 errors (1.1% error rate), while the other programs
had error rates between 4.0 and 10.2%. Interestingly, 9 out of the
10 blat splicing errors were associated with microexons, because
they were missed, predicted with the wrong length, or matched to
the wrong place in the intron. Overall, if we consider the union
of sequences with gene structure errors and splicing errors,gmap

had no errors, whereas the next best performer had an error rate
of 5%.

On the mutated data sets,gmap also outperformed other programs.
In terms of gene structure errors, on the 1% data set,gmap made
errors in 15 sequences (1.7% error rate), while the other programs
had error rates of 3.6–8.5%. On the 3% data set,gmap made gene
structure errors on 32 sequences (3.6% error rate), while the other
programs had error rates of 7.5–20.8%. The gene structure errors
made bygmap typically involved short exons, including microexons
and short missing 5′ and 3′ exons. For example, in the 3% data set,
the missing end exons were all less than 25 nt.

In terms of splicing errors,gmap outperformed the other programs
by even larger margins. On the 1% data set,gmap made no errors,
while the other programs had error rates of 5.1–31.4%. On the 3%
data set,gmap made errors in 6 sequences for an error rate of 0.7%.
By comparison, other programs had error rates of 6.3–56.7%, due
predominantly to shifted canonical splice sites.

Running times for the different programs are also shown in Table 1.
The running time forgmap was for a single thread. The running
time for blat is shown for client–server mode. Times forgmap

andblat do not include startup time for the server or for memory
mapping of the oligomer index files. (Gmap requires about 3 min
to memory map files for the human genome on its first run, but
much less time on subsequent runs if pages from the file are still
resident in memory.Blat requires a somewhat longer time to start
its server.) Running times for the remaining programs measure cDNA
alignment to their corresponding genomic segments, and include the
time needed to restart the program for each alignment. The running
time for dds/gap2 is extremely long, which probably reflects its reli-
ance upon alignment procedures at the nucleotide level. We also note
that MGAlign shows a substantial increase in running time with the
mutated data sets, perhaps reflecting some underlying characteristic
of its handling of substitutions and gaps.

Experiment 2: Human ESTs
Our second experiment assessed the quality of genomic mapping and
genomic alignment on ESTs. We comparedgmap with blat, the
only other integrated program for mapping and alignment available

to us. We constructed a test set of 48,441 ESTs by taking every
100th human sequence from GenBank. We used each program to
map these ESTs onto the NCBI human genome version 35, ignoring
contigs that were labeled as unmapped. We rangmap in batch mode
and the server version ofblat version 31 on the Linux Intel Xeon
platform described previously. Run time for the test set was 3 h and
2 min for blat and 32 min forgmap.

Because ESTs are of widely differing quality, we assigned each
EST a quality score, which was the percentage identity of the EST
relative to the genome as determined by the higher identity score
between thegmap andblat alignments.

The results of our comparison are shown in Figure 6. The top plot
shows the number of ESTs at each quality level. There were 1083
ESTs that neither program could align to the genome. In addition,
there were 3472 ESTs (or 7%) that had 60% identity or less by both
programs. These ESTs are shown as the leftmost vertical bar in the
top graph, and were excluded from further analysis. Approximately
half (20,935 or 47.7%) of the remaining ESTs had quality scores of
98% or more.

For each EST, we determined whethergmap or blat provided a
better alignment. Because the two programs report scores differently,
we scored all alignments using theblast scoring system (Altschul
et al., 1990), which assigns+1 point for matches,−3 for mismatches,
−5 for gap openings and−2 for gap extensions, including the first
nucleotide in the gap. Because the PSL output ofblat includes
introns in its count of genomic gaps, we ignored any genomic gap
>10 nt as a putative intron in computing theblast alignment score
for that program. To disregard minor differences between alignments,
if the difference between alignment scores was 10 points or less, we
considered the alignments to be a tie.

In comparing the ESTs, there were three possibilities to consider:
(1) both programs aligned the EST to the same (overlapping) genomic
location, (2) the programs aligned them to different locations, and
(3) only one program provided an alignment. The first category was
represented by 43,407 ESTs (96.5%); the second by 1206 (2.7%);
and the third by 356 (0.8%).

Among the 43,407 overlapping cases, 32,187 (or 74.2%) ESTs
had a tie score; 8032 cases (18.5%) had a better alignment bygmap;
and 3188 cases (7.3%) had a better alignment byblat. The middle
graph of the figure shows the counts of ESTs for which the alignment
was superior by either program, distributed according to their quality
score. The graph shows that below a quality score of 85%, alignment
quality was evenly divided betweengmap andblat. However, above
a quality score of 85%,gmap provided a better alignment more often
than blat. If we consider the 20,635 ESTs with 98% identity or
more, 18,363 (89.0%) were ties, 1953 (9.5%) favoredgmap, and
319 (1.5%) favoredblat.

The bottom graph of Figure 6 shows the non-overlapping cases,
which include the 1206 ESTs aligned to different genomic locations
and the 356 aligned by only one program. These cases represent
a relatively small percentage of the ESTs, but as before, above a
quality score of 85%,gmap provides a better alignment more often
thanblat does.

Experiment 3: Arabidopsis mRNAs
Observations of nucleotide frequencies around splice sites indicate
that they are species-specific (Senapathyet al., 1990). In addition,
intron lengths have significantly different distributions in different
species, withCaenorhabditis elegans, Drosophila melanogaster and
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Fig. 6. Comparison of EST alignment quality betweengmap andblat. The top graph shows the total counts of ESTs at various quality levels. The middle
graph shows the counts of ESTs whose genomic location by both programs overlap. Counts of ESTs that favorgmap point upward and those that favorblat

point downward. The bottom graph shows the distribution for the relatively few non-overlapping ESTs that either have different genomic locations predicted
by the two programs, or that are aligned by only one program.

A.thaliana having shorter intron lengths on average thanSaccharo-
myces cerevisiae and human beings, and lower organisms only rarely
having introns of the 1000-nt or longer variety found commonly
in higher eukaryotes (Lim and Burge, 2001). Accordingly, cDNA–
genomic alignment programs may potentially perform differently on
different species. To assess the performance ofgmap on a species
different from the previous human experiments, we evaluated it on
the plantA.thaliana. We comparedgmap with GeneSeqer (Usuka
et al., 2000; Schlueteret al., 2003), which was designed forAra-
bidopsis, and which has been shown in a previous comparison (Haas
et al., 2002) to give the best available performance on that genome.

For our test, we used the data set from that comparison, which
consisted originally of 5016 full-length cDNAs from Ceres, of which
5000 are publicly available in GenBank and 16 are proprietary; for
our purposes, we used only the publicly available sequences. We used
gmap to map and align the cDNAs to theArabidopsis genome (The
Arabidopsis Genome Initiative, 2000). We also processed each

cDNA and its corresponding genomic segment, with an additional
1000 nt on each end, using GeneSeqer (5 May 2004 version). We
ran GeneSeqer with the flag ‘-s Arabidopsis’ to use its Arabidopsis-
specific parameters. (In passing, we note that the parameters for
GeneSeqer that we used for the human ESTs in Figures 4 and 5
were ‘-s human -x 30 -y 60’, as recommended by the program’s
authors.) Running times for theArabidopsis data set were 42 min
for GeneSeqer and 1 min forgmap; these times are not entirely
comparable, because GeneSeqer needed to be restarted for each
cDNA–genomic alignment.

In all but 23 sequences (or 99.5% of the time), the two programs
gave similar gene structures and splice sites. In terms of gene struc-
ture, five differences involved short 5′ exons. GeneSeqer reported
three 5′ exons not reported bygmap, with lengths of 9, 6 and 6 nt.
Gmap reported two 5′ exons not reported by GeneSeqer, with lengths
of 9 and 8 nt. Two of the sequence differences involved 3′ exons. In
AY086334, GeneSeqer reports a 9-nt terminal exon not reported by
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Fig. 7. Comparison between GeneSeqer andgmap. These alignments represent all splicing differences between the two programs on a dataset of 5000
Arabidopsis cDNAs. Each comparison shows the GeneSeqer alignment on top and thegmap alignment on bottom. Notation is the same as in Figure 4, with
the addition of the ‘]’ character to indicate an AT–AC intron, and a compressed view of exons for AY086965. Footnotes after the accession numbers indicate
whether: (I) genomic splice site predictions are identical and difference exists only in the exon–exon boundary, (P) same answers are given when parameters
are changed in GeneSeqer, (E) EST or mRNA evidence is available for the splice site.

gmap. In AY085991,gmap found a 33-nt terminal exon not found by
GeneSeqer. Instead, GeneSeqer extends the previous exon through
a stretch of 2 gaps and 14 mismatches.

The remaining 16 cases involve differences in splice sites and one
microexon. The alignments for these cases are shown in Figure 7.
In two of these cases, AY086916 and AY87013, marked in Figure 7
with an (I), the genomic splice site predictions of the two programs
are identical, and the differences lie only in the predicted exon–exon
boundary.

In three cases, marked with a (P), a different choice of parameters
allows GeneSeqer to give the same answer asgmap. For AY08166,

GeneSeqer makes an alignment on the wrong strand. Strand selection
in GeneSeqer depends on splice site scores, and the correct strand
gives very poor splice sites. For AY086677, the intron shown is
shorter than the minimum length that is the default in GeneSeqer;
as discussed previously, such short introns are atypical. And for
AY088919, the 3-nt microexon is shorter than the default minimum
size of 5 in GeneSeqer.

In evaluating the remaining differences, we should note that the
ecotypes of the data set sequences do not necessarily correspond to
the Columbia ecotype used in assembling the genome. Therefore,
mismatches and gaps may reflect differences in ecotype. GeneSeqer
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is more likely to introduce substitutions and gaps around introns,
because it depends upon probabilistic splice site models in addition
to the sequence data, whereasgmap tries to identify the most parsi-
monious alignment of the given cDNA to the given genomic segment.

To help determine which program gives the correct result, we
looked for supporting evidence from other ESTs or mRNAs that
map to the splice site. Supporting evidence was found for five cases,
marked in Figure 7 with an (E). For AY086065 and AY088578, the
evidence appears to support the splice site in thegmap alignment,
whereas for AY084877 and AY087013, the evidence appears to sup-
port the GeneSeqer splice site. For AY086965, the EST and mRNA
evidence do not resolve the issue of where the cDNA nucleotides
map to the genome. In this case, we found other sequences with an
additional 462 nucleotides relative to the test cDNA, whichgmap

introduces as a new middle exon and which GeneSeqer appends
to its existing middle exon. We also found a full-length sequence
AAC50956 in the patent database that GeneSeqer aligns to give the
same single 630-nt intron asgmap.

To evaluate the robustness of the two programs to sequence error,
we created mutated data sets at rates of 1 and 3%, using the same
approach as in Experiment 1. We used only the 4977 sequences
for which the two programs agreed on gene structure. The results
of the two programs were roughly equivalent. On the 1% data set,
GeneSeqer had no gene structure errors and shifted canonical splice
sites in 8 sequences. In comparison,gmap had 4 gene structure errors
and 3 sequences with splicing errors. The gene structure errors com-
mitted by gmap were relatively minor, with missing 5′ exons of
lengths 10 and 9 nt and missing internal exons of 6 and 7 nt.

On the 3% data set, GeneSeqer also had no gene structure errors
and shifted canonical splice sites in 13 sequences.Gmap had gene
structure errors in 9 sequences, and splicing errors in 9 sequences.
As before, the gene structure errors bygmap were minor with miss-
ing 5′ exons of lengths 20, 10 and 9 nt, and 6 missing internal
exons, all of length 7 nt or less. The splicing errors bygmap

involved shifted canonical splice sites in 5 sequences, and conver-
sion of semi-canonical (GC–AG) splice sites to canonical ones in
4 sequences.

IMPLEMENTATION
Gmap is implemented in the C programming language. It can be
compiled and run on any modern Unix system with a 32-bit or
higher architecture. We have compiled and run the code success-
fully on Digital Alpha Tru64, Silicon Graphics Irix, Sun Solaris,
Intel Linux and Mac OS X platforms. Source code and documenta-
tion for gmap and associated programs are available for open use at
http://www.gene.com/share/gmap

Beforegmap can handle a given genome, it requires that the gen-
ome be pre-processed, by constructing a genomic oligomer index
(consisting of an offset file and a position file) and a genomic
sequence file. These files are generated by an auxiliary program
gmap_setup, in a process that can require a few hours to com-
plete, depending on the size of the genome. However, each release
of a genome needs to be set up only once, and the resulting binary
files are portable across different computer architectures, because
gmap translates the file contents as necessary for big-endian and
little-endian platforms.

The genome may be read in asfasta files that contain either
contigs in any order or entire assembled chromosomes. The

chromosomal location of contigs can be specified either in the header
lines of thefasta file or in a separate file. The program can handle an
arbitrary number of chromosomes, and can concatenate a collection
of contigs to create a special-purpose chromosome (e.g., ‘22U’ for
unmapped contigs from chromosome 22). Arbitrary chromosomes
may also be used to include alternate versions of a chromosome, such
as the Celera version of mouse chromosome 16 (Muralet al., 2002)
or the two available versions of human chromosome 7 (Schereret al.,
2003; Hillier et al., 2003).

The genomic sequence file represents the genome in one con-
tinuous sequence with the chromosomes concatenated. It may be
stored in a compressed format, which facilitates the reading of the
entire genome into RAM, when sufficient RAM is available. (In addi-
tion, some 32-bit machines limit file offsets to 2 GB, which makes
compression necessary on these machines for random file access
functions to work properly.) The compressed format allocates 3 bits
per position, allowing for representation of A, C, G, T, N and X. The
compression scheme stores each block of 32 nucleotides into three
32-bit words, with the first two words holding the first two bits of
each nucleotide, and the last word holding the third bit (which is set
only for non-ACGT letters). If the user chooses not to compress the
genomic sequence file, the full range of alphabetic characters can of
course be represented. For the human genome, genomic oligomer
files require a total of 1.9 GB and the genomic sequence file requires
1.1 GB compressed (3.1 GB uncompressed). Once a genome is pro-
cessed bygmap_setup, the user may retrieve arbitrary segments
from the genome using the auxiliary programget-genome. The seg-
ments may be specified by either contig coordinates (if applicable)
or chromosomal coordinates.

Gmap can be run on afasta file containing one or more cDNA
sequences. For a single sequence,gmap is generally run in interact-
ive mode, in which parts of the genomic files are read directly as
needed. For larger runs, the user may select a batch mode, in which
the program attempts memory mapping, first on the oligomer file
and then on the sequence file. Memory mapping permits fast access
to portions of a file, without having to load the entire file or allocate
dedicated RAM for the entire file. If the attempt at memory mapping
fails on either file (usually due to insufficient memory available), the
program automatically resorts to its interactive mode for that file,
by subsequently using file access functions. Memory mapping of the
position file, which needs more frequent access, is more important for
speed than memory mapping of the genome file. Therefore, the min-
imum memory requirement for the program is only 128 MB, although
the batch mode works optimally when there is enough memory avail-
able (2 GB or more) to permit memory mapping of the position file
and to avoid having to swap out parts of that file.

A third mode ofgmap allows the user to provide both a genomic
segment and one or more cDNA sequences. In this mode, oligomer
index files are not needed, becausegmap bypasses the mapping step
and aligns the cDNA sequences to the given segment. This mode
givesgmap the same functionality as pure genomic alignment pro-
grams, and is useful for computing cDNA alignments on the fly for
a particular genomic region of interest.

In processing afasta file, gmap is able to use multithreading,
which works most effectively on machines with multiple pro-
cessors. When multithreading is enabled, one thread handles reading
of the input, one handles writing of the output alignments, and
one or more worker threads each processes an individual cDNA
sequence. Our implementation allocates thread-specific memory
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in critical portions to reduce memory contention across threads.
Thread-specific memory allocation is particularly critical because the
underlying representation of a cDNA–genomic alignment ingmap is
a linked list, which requires cells to be added and deleted frequently.
Although this representation facilitates the insertion, deletion and
substitution of subalignments, it can cause contention for heap
memory when multiple threads need to build up their linked lists sim-
ultaneously. In turn, heap contention prevents multithreading from
using the full potential of multiple parallel processors. Therefore,
gmap has dedicated memory allocation procedures that give each
thread its own pool of heap memory as needed, thereby minimizing
heap contention.

Additional features
In the course of our development and use ofgmap, we have added
several features that extend its functionality. Although a full discus-
sion of these features is beyond the scope of this paper, we mention
them briefly here.

Identification of chimeric ESTs Gmap is capable of finding and
reporting chimeras, or ESTs whose 5′ and 3′ ends map to differ-
ent genomic regions. Although chimeric ESTs are often thought
to be library artifacts (Sorek and Safer, 2003), some observations
suggest that such chimeras are indicative of translocation events in
cancer (Panagopouloset al., 2000). Furthermore, some recent experi-
mental results have confirmed some novel chimeras detected using
genomic alignments of ESTs (Hahnet al., 2004).

For a given cDNA,gmap maintains all alignment results in
memory during its calculations. When no single alignment is able to
cover a certain fraction of the original length (specified by the user,
with a reasonable value being 60 or 70%),gmap finds the pair of
partial alignments that provides the greatest coverage of the query
sequence. This pair is then reported as the optimal solution to the
chimeric alignment. In some cases, this solution has better coverage
than one would get by taking the longest alignment and then trying
to align the remaining cDNA.

Relative alignment of ESTs Gmap has a mode where a set of ESTs
can be aligned relative to a reference sequence. In this mode, the
user providesgmap with both a full-length mRNA and afasta file of
ESTs.Gmap then uses the mRNA to identify the appropriate genomic
segment and to mark it with the coding region and codon positions.
Finally, gmap uses this marked genomic segment to align the ESTs.
Based on the codon markings,gmap can determine whether each
EST overlaps the coding region or lies in an untranslated region or
an intron.

The genomic codon boundaries also enablegmap to perform a
frameshift-tolerant translation of the EST. This translation maxim-
izes the amount of EST information available to identify putative
point mutations and polymorphisms, but of course misses potentially
true frameshift mutations that may lead to a premature stop codon.
Gmap compares the translation of each EST against the translation
of the reference sequence to report a summary of protein sequence
variations, including SNPs, amino acid insertions and deletions, and
alternative splice forms.

Compressed alignment format Gmap can produce alignments in a
variety of formats, including a compressed format that saves con-
siderable space. The compressed format stores only differences

relative to the genomic sequence. The compressed alignments may be
uncompressed to their original form using a provided utility program.

Lookup of genomic map information Gmap has the capability of
looking up information in a genomic map file to find information
relative to a given cDNA alignment. Genomic map files consist of a
set of genomic intervals, with each interval having some annotation,
an optional label and an optional tag. They are implemented as an
integer interval tree (IIT) (Bucher and Edelsbrunner, 1983), which is
a binary tree structure designed for the rapid retrieval of all intervals
that overlap a given query interval. IITs permit retrieval of allk

overlapping intervals for a given query interval inO(k + log2 n),
wheren is the total number of intervals in the database.

The annotations in our genomic map files can be of arbitrary
length, meaning that one may store sequences, entire alignments,
or other arbitrary genomic bounds such as cytogenic bands and syn-
tenic regions. At our institution, we routinely create genomic map
files containing previously computed EST alignments (in our com-
pressed format). Such files allow us to rapidly retrieve all ESTs that
overlap a given mRNA on the genome. Another use is the con-
struction of a genomic map file with gene boundaries (potentially
overlapping). The resulting map file can then be used to tell which
gene a given EST belongs to.

Each interval in our genomic map files may have a label, and the set
of labels are also stored in a binary tree structure, allowing one to
retrieve an interval by name in logarithmic time. Tags allow one to
mark and retrieve subsets of intervals. We often use tags to store
intervals as being on the plus or minus strand of the genome, so we
can retrieve ESTs from a specified strand if desired.

Aligning against multiple strains Our IIT files also make it pos-
sible to efficiently store and retrieve strain variants for a given
species. Therefore, we have built intogmap the ability to map and
align a given cDNA over multiple strains simultaneously. Mapping
over multiple strains requires that we augment our genomic index
table with 24-mers from all strains. Alignment over multiple strains
requires us to build a genomic map file that contains strain differ-
ences and their genomic coordinates on a reference strain. At run
time, when a candidate genomic segment is found in the mapping
step,gmap uses in subsequent alignment steps not only the genomic
segment from the reference strain but also segments from relev-
ant alternate strains by patching in the alternate strain sequence. In
ranking the results,gmap is therefore able to identify the strain that
best matches a given cDNA. Given that the NCBI mouse genome
(build 33) has sequences from 9 different strains, this feature can
result in considerable savings over mapping and aligning repeatedly
against a complete genome for each mouse strain.

DISCUSSION
Our programgmap is designed to provide a general-purpose solution
for cDNA–genomic mapping and alignment. Most existing programs
are intended to solve either the mapping task or the alignment task,
but not both. Programs that do provide integrated mapping and align-
ment, namely,blat andsquall, are intended primarily for batch or
server mode, not for single query or interactive use.

Although one advantage of an integrated mapping and alignment
program over separate programs is convenience, coupling of the
mapping and alignment tasks also provides functional advantages.
Genomic alignment programs require the user to supply the correct
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genomic segment to align to, but the correct segment may not be
apparent when there are multiple candidate genomic locations. One
approach to this problem is to try to improve the ability of the genomic
mapping procedure to find the correct location initially. Another
approach, taken bygmap, exploits the integration of genomic map-
ping and alignment: the correct genomic mapping is determined by
the results of the alignment procedure.

Ourprogramgmap hasbeen indevelopment forover3years. In that
time, theprogramhasundergonecontinualevolution, both to improve
its accuracy and speed, and to provide additional functionality. Since
existing cDNA–genomic alignment programs can handle 95% of
error-free sequences correctly, our work has been devoted primarily
to the remaining 5%, and toward perfecting gene structure determ-
ination and splice site detection in the presence of sequence error.

One central issue in our development process has been whether
to use probabilistic models of splice sites, such as scoring
matrices (Salzberg, 1997; Brendel and Kleffe, 1998). Such models
are used widely inab initio gene finding programs (Uberbacher and
Mural, 1991; Burge and Karlin, 1997; Lukashin and Borodovsky,
1998; Salzberget al., 1999; Reeseet al., 2000) and in homology-
based gene finding programs (Guigóet al., 1992; Huanget al., 1997;
Gotoh, 1999; Batzoglouet al., 2000; Korfet al., 2001; Novichkov
et al., 2001; Rinner and Morgenstern, 2002; Brendelet al., 2004),
and their use has continued in many cDNA–genomic alignment pro-
grams. Likewise, in our early development ofgmap, we also used
such scoring matrices. However, when the alignment methodology
was improved through oligomer chaining and sandwich DP, such
matrices proved to be unnecessary, since the cDNA sequence (even
with errors) plus the dinucleotide pairs at the end of the introns
provide enough information to determine the splice site boundaries
accurately. The absence of splice site models provides some advant-
ages: it allows the reported alignment to reflect the given data rather
than prior probabilities of splice site patterns, and it potentially makes
the genomic alignment task generalizable across species.

Another issue in our development work has been computational
speed, both for processing a single cDNA and for processing a large
batch of ESTs. We have found it convenient to be able to map and
align a single cDNA sequence quickly when needed, and to be able
to switch quickly among different genomes or versions of a gen-
ome. As the number of sequenced genomes grows, a file-based
approach to mapping and alignment should become increasingly use-
ful. Although we have mentioned batch running times only briefly
in our experimental results, they show thatgmap provides a several-
fold increase in speed over existing programs. Our running times are
even faster when multithreading is enabled. In our institution, we are
able to map and align the GenBank set of approximately 6 million
human ESTs onto the genome using a single computer with three
worker threads in less than 2 days.

Although some users may not be concerned directly with compu-
tational issues such as alignment accuracy or speed, these issues can
have a significant impact on our understanding of the underlying bio-
logy. As we have mentioned, improvements in alignment accuracy
can lead to improved genomic mapping of cDNAs, and hence result
in better definitions of gene boundaries. Moreover, the ability of an
alignment program to detect splice sites in the presence of sequence
error and in the absence of prior bias may alter our assessment of the
frequencies of canonical, semi-canonical and non-canonical splice
sites. Likewise, our knowledge of microexons and chromosomal
rearrangements can be enhanced by accurate prediction of gene

structures and chimeric ESTs. Accurate and fast genomic mapping
and alignment should facilitate our exploration of the genome and
our understanding of the structure, function and evolution of genes.
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