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ABSTRACT

Motivation: Next-generation sequencing captures sequence
differences in reads relative to a reference genome or transcriptome,
including splicing events and complex variants involving multiple
mismatches and long indels. We present computational methods
for fast detection of complex variants and splicing in short reads,
based on a successively constrained search process of merging
and filtering position lists from a genomic index. Our methods are
implemented in GSNAP (Genomic Short-read Nucleotide Alignment
Program), which can align both single- and paired-end reads as
short as 14 nt and of arbitrarily long length. It can detect short-
and long-distance splicing, including interchromosomal splicing, in
individual reads, using probabilistic models or a database of known
splice sites. Our program also permits SNP-tolerant alignment to
a reference space of all possible combinations of major and minor
alleles, and can align reads from bisulfite-treated DNA for the study
of methylation state.
Results: In comparison testing, GSNAP has speeds comparable
to existing programs, especially in reads of ≥70 nt and is fastest
in detecting complex variants with four or more mismatches or
insertions of 1–9 nt and deletions of 1–30 nt. Although SNP tolerance
does not increase alignment yield substantially, it affects alignment
results in 7–8% of transcriptional reads, typically by revealing
alternate genomic mappings for a read. Simulations of bisulfite-
converted DNA show a decrease in identifying genomic positions
uniquely in 6% of 36 nt reads and 3% of 70 nt reads.
Availability: Source code in C and utility programs in Perl are
freely available for download as part of the GMAP package at
http://share.gene.com/gmap.
Contact: twu@gene.com
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1 INTRODUCTION
Numerous programs have been developed to date for the alignment
of short reads from next-generation sequencing technologies, such
as Illumina/Solexa (Hayward, CA, USA) and ABI/SOLiD (Foster
City, CA, USA), to a reference genome or transcriptome. Because of
the large numbers of short reads that can be produced from a given
sample, much emphasis has placed on speed. Accordingly, recent

∗To whom correspondence should be addressed.

programs, such as Bowtie (Langmead et al., 2009), BWA (Li and
Durbin, 2009) and SOAP2 (Li et al., 2009), have shown how suffix
arrays (Manber and Myers, 1993), compressed using a Burrows–
Wheeler Transform (BWT; Burrows and Wheeler, 1994), can rapidly
map reads that are exact matches or have a few mismatches or short
insertions or deletions (indels) relative to the reference.

In addition to speed, it is also important to broaden the range
of possible variants that can be detected in reads, since interesting
biology is likely to be revealed not merely as single nucleotide
polymorphisms (SNPs) or mutations from the reference, but also
as more complex phenomena, such as multiple mismatches, long
indels and combinations thereof. Such complex variants represent a
substantial source of genetic diversity. For example, indels represent
7–8% of human polymorphisms, with 25% of coding indels being
longer than 3 nt (Bhangale et al., 2005; Weber et al., 2002).
Long indels that affect multiple amino acids may have significant
biological consequences. Moreover, as reads continue to lengthen,
from their original ∼30 nt to their current 75–100 nt, they are more
likely to have multiple or complex differences from the reference,
making detection of complex variants even more critical.

Other important biological phenomena arise from splicing events,
which provide insights into gene structure, alternative splicing, gene
fusions and chromosomal rearrangements. Although splicing can be
determined readily in long EST and cDNA sequences using general-
purpose genomic mapping and alignment programs such as BLAT
(Kent, 2002) or GMAP (Wu and Watanabe, 2005), short reads pose a
challenge because they often align to numerous places in a genome,
and because they often lack insufficient sequence specificity on one
or both ends of the exon–exon junction to accurately define the
junction.

One solution for detecting splicing in short reads has been to
align them to a reference transcriptome, possibly augmented with
artificially constructed exon–exon segments (Wang et al., 2008).
However, such an approach will identify only known or predicted
combinations of exons, and not unexpected exon pairs that occur
through exon skipping, cryptic splicing or gene fusions. Another
approach, taken by the TopHat program (Trapnell et al., 2009),
analyzes an entire dataset of mapped reads to identify splice site
junctions between exons in a given neighborhood. However, that
approach requires exons to have sufficiently high expression and
will miss splicing events that are spanned by individual reads at
a low level. A third approach, provided by the QPALMA program
(Bona et al., 2008), can align individual reads across exon–exon
junctions using Smith–Waterman-type alignments and a specifically
trained splice site model. All of these approaches are limited to
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identifying only local exon–exon junctions and not unanticipated
distant or interchromosomal gene fusion events.

To expand the range of biological phenomena that can be inferred
from short reads, we have developed fast and memory-efficient
methods for detecting complex variants and splicing in individual
reads. Our methods are implemented in GSNAP (Genomic
Short-read Nucleotide Alignment Program), which can align single-
and paired-end reads as short as 14 nt and as long as desired. Our
program can detect splicing, multiple mismatches, long indels and
combinations thereof, up to a user-specified point total, limited to
a single splice or indel per read, provided the read (or parts of the
read on each end of the indel or splice) has a consecutive stretch of
14 nt that match the reference sequence (Fig. 1A). (Future versions
of the program may allow multiple indels or possibly multiple
splices per read.)

Our program can identify splicing within short reads using two
types of evidence. First, it can evaluate the surrounding genomic
sequence using probabilistic models of donor and acceptor splice
sites (Fig. 1B). Second, it can utilize a user-provided database
of known exon–intron boundaries, which avoids false positive
and negative results from probabilistic models (Fig. 1C). Known
splice sites will reveal most alternative splicing and gene fusion
events, which generally occur through exon skipping and crossovers
between introns. GSNAP can rely upon either or both of these types
of evidence to identify splicing events, including those with mis-
matches, as well as partial splicing or ‘half intron’ events, where one
end has enough sequence to align to one exon, but the other end lacks
enough sequence to identify the other exon (Fig. 1C). Splicing events
may span not only the short distances seen in normal or alternative
splicing, but also long-distance intrachromosomal deletions or
inversions, and interchromosomal translocations (Fig. 1D).

Our program also implements the ability to align reads not just
to a single reference sequence, but to a reference ‘space’ of all
possible combinations of major and minor alleles from databases
like dbSNP (Sherry et al., 2001). By aligning to a reference space
instead of a single reference sequence, our program avoids treating
minor alleles as mismatches and thereby penalizing those genotypes
in the alignment process. The utility of SNP-tolerant alignment is
illustrated by an example that initially suggested a splice junction
specific to one sample, but was actually due to two minor alleles
nearby causing the read to fail to align (Fig. 1E). In SNP-tolerant
alignment, minor alleles are treated as matches to a reference space,
rather than as mismatches to a reference sequence. This idea has been
implemented elsewhere (Manske and Kwiatkowski, 2009), but in a
way that requires 29 GB of memory for SNP-tolerant alignment to
the human genome. In this paper, we show how this feature can be
performed instead with a much smaller memory requirement.

Our methods can be generalized for other tasks, such as mapping
reads from DNA treated with sodium bisulfite (BS) for the study
of methylation state (Lister and Ecker, 2009). BS converts each
unmethylated cytosine in genomic DNA to uracil, which appears
subsequently as thymine in reads. Reads from BS-converted DNA
have a high error rate, which provides additional motivation
for efficient detection of multiple mismatches. Although existing
alignment programs can be adapted to handle such data, by
converting all cytosines to thymines in both the reference sequence
and reads (Deng et al., 2009), one subtle problem is that this
approach obscures mismatches between reference thymines and read
cytosines. The data structures in GSNAP allow it to align BS-seq
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Fig. 1. Examples of complex variants detected by GSNAP. (A) A 17 nt indel
with mismatches in reads (below) relative to a genomic region (above),
matching a known polymorphism in dbSNP. (B) Splicing found using
probabilistic models reveals an intron within exon 1 of HOXA9, supported
experimentally (Dintilhac et al., 2004). (C) Splicing found using known
splice sites, despite low probabilistic model scores. Ellipses indicate ‘half
intron’ alignments, where reads have insufficient sequence to determine the
distal exon. (D) Interchromosomal splicing between BCAS4 and BCAS3
found in the MAQC universal human reference RNA sample and observed
in MCF7 cell lines (Hampton et al., 2009). (E) SNP-tolerant alignment near
a splice site allows both genotypes to align equally well.

reads with explicit detection of genomic-T to read-C mismatches,
against either a reference sequence or a SNP-tolerant reference
space.

2 METHODS

2.1 Overview
We view alignment as a search problem over a space of genomic regions
in the reference sequence, or combinations of regions if gaps are allowed.
(Although a reference sequence may consist of chromosomes, contigs,
transcripts or artificial segments, we simplify our discourse by referring
to it as a ‘genome’.) Searching involves the steps of generating, filtering
and verifying candidate genomic regions, and its efficiency depends on
designing the generation and filtering steps to produce as few candidates
as possible. Several alignment programs, including MAQ (Li et al.,
2008a), RMAP (Smith et al., 2008), SeqMap (Jiang and Wong, 2008) and
RazerS (Weese et al., 2009), preprocess the reads and then generate and filter
candidate genomic regions by scanning a read index against the genome.
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A B

C

Fig. 2. Representing a reference sequence and a reference space for genomic
alignment. (A) A hash table consists of an offset file of possible 12mers and
a position file containing a sorted list of genomic positions for each 12mer.
(B) SNPs in a genomic 12mer are represented by duplicating the position in
the lists for all combinations of major and minor alleles within the 12mer.
(C) Major alleles are represented in one compressed genome, while minor
alleles are represented in another compressed genome.

For large genomes, it is more efficient to pre-process the genome rather
than the reads to create genomic index files, which provide genomic positions
for a given oligomer. Genomic indexing also permits parts of reads to
be aligned to arbitrary genomic regions, needed for long-distance splice
detection. Indexing need be done only once for each reference sequence, with
the resulting index files usable by each new dataset. Oligomers of all lengths
can be indexed using a suffix array or its compressed BWT equivalent, as
used in Bowtie, BWA and SOAP2, which can represent a reference sequence
compactly, in 2 GB for a human-sized genome of 3 billion nt.

However, when only a single oligomer length q is needed by an algorithm,
a simple hash table (Ning et al., 2001) or q-gram index (Rasmussen et al.,
2006) applied to the genome will suffice (Fig. 2A). This data structure
consists of an offset file (or lookup table) of all possible q-mers, with pointers
to a position file (or occurrence table) containing a list of genomic positions
for each q-mer. For our search algorithm to work most efficiently, it is
important that each position list in the position file be pre-sorted, which
allows intersections to be computed quickly among multiple q-mer lookups.
The intersection process also requires the positions in each position list to be
adjusted at run time for its location in the given read, so they correspond to
the diagonals in an alignment matrix between genome and read. Although our
alignment algorithm could potentially work with another data structure that
provides genomic positions for a given q-mer, a suffix array would require
the additional step of sorting each position list at run time.

A set of n sorted lists can be merged in time O(l logn), where l is the sum
of list lengths, by using a heap-based multiway merging procedure (Knuth,
1973). A merging procedure can produce not only a list of candidate
genomic regions, but also information about the count and read location of the
position lists that support each region. This support information can provide
evidence about the number of mismatches in the read, and can therefore be
used to filter out candidate regions.

To use multiway merging effectively, our algorithm depends on another
idea, that of successive score constraints. For a given read, our program is
designed to report the ‘best’ alignment or alignments, those with the lowest
score based on mismatches plus an opening gap penalty for an indel or
a splice. Therefore, our search process is constrained successively by an
increasing score level K , starting from K =0 for an exact match, and ending
either with a successful alignment at some K or at a maximum score level
specified by the user. In addition to finding the best alignment, a constrained
search process can also find suboptimal alignments, by continuing the search
at successive score levels beyond the first, or optimal, one that yields an
alignment. Our algorithm could also find an exhaustive set of alignments
up to a given score level by searching at that score level and reporting all
results.

Depending on the score constraint K and the read length L, a multiway
merging process can be formulated in two different ways to generate and filter
genomic regions. For low values of K involving none or a few mismatches
relative to L, we apply a merging procedure based on a spanning set of
oligomers, which filters genomic regions based on the count of q-mers that
support the region. For higher levels of K involving more mismatches, we
apply a merging procedure based on a complete set of oligomers, which filters
genomic regions based on the pattern of q-mers that support the region. Both
the count- and pattern-based criteria provide lower bounds on the number of
mismatches present in a read or part of a read. If a lower bound exceeds the
given score constraint K of allowed mismatches, the read may be filtered out
and need not be verified against the genome to determine the actual number
of mismatches.

Ahash table is relatively large, requiring 12 GB to represent a human-sized
genome if every overlapping oligomer is indexed. Accordingly, SOAP (Li
et al., 2008b) requires 14 GB of memory to process a human-sized genome.
Although modern computers generally have sufficient physical memory to
query such large hash tables, smaller data structures can speed up programs
by using memory paging and caching resources more effectively. We can
reduce the size of a hash table by sampling the genomic oligomers that are
indexed in the table. In our program, we index 12mers every 3 nt in the
genome, which reduces the size of a human genomic hash table to 4 GB. As
a result, our algorithm is designed to use a hash table sampled every 3 nt and
still achieve full sensitivity as if every overlapping oligomer were indexed.

A hash table indexing scheme can be extended to align major and minor
alleles equally well in SNP-tolerant alignment. (For ease of discussion,
we refer to the alleles in the reference sequence as ‘major’ and their
corresponding alternate versions as ‘minor’, regardless of their actual
frequencies in a population.) Because a hash table represents the genome
in q-mer pieces, it can represent the enormous space of all combinations of
major and minor alleles in a relatively straightforward way.

To construct a SNP-tolerant hash table, we scan the genome and process
each sampled genomic q-mer that contains one or more SNPs, by generating
each possible combination of the major and minor alleles contained within
and duplicating this genomic position for each generated q-mer. Finally,
we re-sort the position list for each q-mer (Fig. 2B). A lookup in this hash
table of any combination of major and minor alleles in a q-mer at a given
genomic position will all contain the desired position. Our experience shows
that a SNP-tolerant hash table is only slightly larger than the original. When
we incorporate the 12 million SNPs from dbSNP version 129 into human
genome version 36, the hash table increases in size from 3.8 to 4.0 GB. Our
construction algorithm requires that the computer have sufficient memory
to store the hash table, thereby requiring 4 GB for a human-sized genome.
Verification in a SNP-tolerant manner is discussed in Section 2.4.

2.2 Spanning set generation and filtering
A spanning set is a minimal set of 12mers that covers the read (Fig. 3). This
structure exploits the pigeonhole principle that the number of non-supporting
12mers—those that fail to contain a given position in their corresponding
position list—provides a lower bound on the number of mismatches
in the read. However, implementation of this pigeonhole principle is
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Fig. 3. Spanning set method for generating and filtering mismatch
candidates. (A) A read of length 62 nt is analyzed at shifts of 0, 1 and 2 nt,
with spanning sets each consisting of five elements. Elements at the ends may
overhang the ends by 1 or 2 nt. Spanning set elements are shown in detail
for the shift of 2 nt. (B) An overhanging 12mer is represented by a union of
lists obtained from hash table lookups of all possible substitutions for the
overhang. (C) Overlapping 12mers are represented by taking the intersection
of their position lists. (D) Elements used for generating candidates (gray).
(E) Elements used for filtering candidates (white). A candidate region (black)
is supported by two of the generating elements, and is checked for support
in the remaining filtering elements.

complicated by our use of sampling in the hash table, which creates
uncertainty about the phase of the aligned read relative to the sampled
genomic 12mers. Therefore, the program must construct six spanning sets,
one for each shift of 0, 1 or 2 nt in both the forward and reverse complement
directions (Fig. 3A). In addition, sampled hash tables cause genomic position
information to be available only at intervals of 3 nt, thereby causing
information to incomplete for 12mers that overhang past read boundaries.
To handle such cases, the program computes the position list for a 12mer
that overhangs the end of the read by 1 or 2 nt by substituting all possible
nucleotides in the overhanging positions and taking the union of the resulting
position lists (Fig. 3B).

Another complication is that a spanning set will often contain 12mers that
overlap. To address this issue, we consider an overlapping pair of 12mers
to be a single ‘element’ in the spanning set, with a position list equal to the
intersection of the two constituent position lists (Fig. 3C). The resulting set
of elements is non-overlapping, so the pigeonhole principle now holds where
k non-supporting elements implies a lower bound of k mismatches, and the
region may be filtered out if k >K . There may be several choices for the pair
of 12mers that overlap to create a single element; our program heuristically
selects the 12mer with the longest position list or union of position lists as the
site of the overlap, because the intersection operation on that 12mer is likely
to eliminate the largest number of positions from subsequent consideration.

Although we could use all spanning set elements to generate candidates
and then proceed to the verification step, we can make our algorithm faster if
we designate some elements for generating candidates (Fig. 3D) and reserve
others for a separate filtering step (Fig. 3E). This division of labor is intended
to reduce the O(l logn) complexity for a heap-based priority queue, which
is linear in l. If we check a sorted list of length li for the presence of
a given position in a filtering step, this can be done in logarithmic time
O(logli) through a binary search process. Consequently, our method performs
a heap-based merge of some position lists (the generating elements), and
counts the number of elements that support each of the resulting candidate
regions. If this count is high enough to allow the possibility that K or fewer
total elements will be non-supporting, then the candidate region undergoes
a filtering step that checks each of the filtering elements for support.

The algorithm eliminates the candidate if more than K total elements show
non-support; otherwise, the region undergoes a verification step to determine
the actual number of mismatches.

We have made implementation of our spanning set method efficient in
various ways. First, the program selects elements with the shortest position
lists as generating elements and the longest ones for filtering elements,
because while every position in generating elements must be processed,
only some of those in the filtering elements need be. Second, we maintain
a pointer on each filtering element and advance that pointer only when we
check for support, by using a galloping binary search (Hwang and Lin, 1980).
Third, filtering elements that involve unions or intersections of position lists
need not have these set operations computed explicitly, but can be represented
instead by their constituent position lists, and support checked by performing
the appropriate disjunctive or conjunctive searches when needed.

Allocation of N total elements between generating and filtering purposes
depends on the constraint score level K of allowed mismatches. At least
(K +1) elements must be generating to guarantee that at least one generating
element has support for a candidate region when the K other generating
elements do not. We have found empirically that for K >1, it is more efficient
to allocate (K +2) elements for generating purposes, because the requirement
for two supporting elements greatly reduces the number of candidate regions
generated.

Because the spanning set method requires at least (K +2) generating
elements [or (K +1) for the exact and one-mismatch constraints], it can be
used to detect only a limited number of mismatches relative to read length L,
which limits the total number of elements N . Spanning set elements are non-
overlapping in all three shifts when L=10 (mod 12), so N ≤�(L+2)/12�.
Therefore, (K +1)<N or (K +2)<N indicates that the spanning set method
can be applied to constraint level K when K =0 for 14≤L≤21; K ≤1 for
22≤L≤33; and K ≤�(L+2)/12�−2 for L≥34.

2.3 Complete set generation and filtering
To handle greater numbers of mismatches than those detectable by the
spanning set method, we employ a strategy based on the complete set of
overlapping 12mers. This complete set method works for any constraint
level K of allowed mismatches, as long as the read and candidate region
have 14 consecutive matches (a 12mer out of phase by as many as 2 nt).
One sufficient condition for 14 consecutive matches is that the number of
mismatches be ≤�L/14�−1. Up to this level of mismatches, GSNAP is an
exhaustive algorithm, meaning that it can guarantee to identify and report
all available alignments in the genome with that many mismatches.

Candidates are generated by performing a multiway merge of position
lists for all read locations in a single forward and single reverse complement
pass, keeping track of the read location of 12mers that support each
candidate region. The pattern of supporting 12mers provides a lower bound
on mismatches in the read. If the supporting 12mers have read locations
separated by �p, then the minimum number of mismatches between them
is �(�p+6)/12� (Fig. 4A). Over the entire read, we can sum these lower
bounds in a pattern-based lower bound calculation (Fig. 4B). Specifically,
if a read of length L has a pattern of supporting 12mers at read locations
pi,i=1,...,n, a lower bound on mismatches is

∑n
i=0�(pi+1 −pi +6)/12�,

where p0 =−3 and pn+1 =L−9.
To make the complete set method more efficient, we note that the merging

process must process every position from each position list, and can therefore
be slowed down by non-specific 12mers with extremely long position lists
that do not help localize the read. We can gain efficiency by ignoring these
non-specific 12mers, defined currently as those with position lists that are
>10 times the mean position list length. The lower bound formula must be
modified accordingly to compensate for the missing 12mers, essentially by
assuming that they are supporting. This strategy can potentially fail to align
reads or portions of reads if the non-specific or repetitive nucleotide patterns
are necessary for mapping the read. To successfully align these reads, the
program provides an option for a greedy strategy in which non-specific or
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pn+1=42p2=8p1=5 L=51p0=

B

Single mismatch Two close mismatches

Two distant mismatches

A

Fig. 4. Complete set method for generating and filtering mismatch
candidates. (A) Patterns of supporting (gray) and non-supporting (white)
12mers induced by a single mismatch, by two close mismatches, and by
two distant mismatches (crosses). These patterns indicate a lower bound of
�(�p+6)/12� mismatches, where �p is the distance between start locations
of consecutive supporting 12mers. (B) Pattern-based lower bound calculation
for a read of 51 nt, shown on top with actual mismatches. Supporting 12mers
(gray) start at read locations 5, 8, 11 and 29, with end locations at −3 and
L−9=42. The lower bound formula is summed over successive supporting
12mers to give a total lower bound of four mismatches.

repetitive 12mers are initially ignored, and then subsequently included if an
alignment is not found.

2.4 Verification of candidate regions
Candidate regions that are generated and survive the filtering process have
an established lower bound on their number of mismatches. To determine
the actual number of mismatches and verify that it does not exceed the score
constraint K , we check these regions by aligning the read against the region.
To reduce memory requirements, we store the genome in a compressed
format that is created in addition to the hash table during the pre-indexing
process (Fig. 2C), and verification is performed against this compressed
version of the genome. For indexing of a reference sequence, the compressed
genome contains the major alleles. For indexing of a reference space, GSNAP
also accesses a second compressed genome that contains the minor alleles.
The compressed genome format, as described in our paper on GMAP, stores
each nucleotide in 3 bits. Each 32 nt block of the genome is represented by
three 32-bit words. The first two words represent the nucleotide using 2 bits
each, while the remaining word has 32 bits used as flags. For the major-
allele genome, the flags indicate if the genomic position has a unknown or
ambiguous nucleotide that cannot be represented as A, C, G or T. For the
minor-allele genome, the flags indicate if the genomic position has a SNP.

Verification is performed at the bit level. Instead of decompressing the
genome, the program compresses the read and shifts it to match the genome
coordinates for a candidate region. The compressed read and genome are then
combined bitwise using an exclusive-or function, and adjacent pairs of bits
are reduced to yield bit vectors that contain the positions of mismatches. For
alignment against a reference space, the read is similarly combined bitwise
with the minor-allele genome and the two mismatch results are combined
using a logical-and function. Therefore, a mismatch occurs at a SNP only
if the read allele differs from both the major and minor alleles. Mismatch
results can be further analyzed to count the total number of mismatches, or
to report their locations from the left or right of the read. GSNAP will use
the built-in bitwise functions popcount, clz (count leading zeroes) and
ctz (count trailing zeroes) for these tasks, if they are available on a given
machine, or will use its own equivalent bitwise functions if they are not.
However, our testing reveals that built-in functions provide only a 1–2%
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Fig. 5. Efficient detection of indels and splice pairs. (A) The complete set
method generates candidate regions with supporting 12mers (gray). (B) Pairs
of candidates within the allowed distance are tested for middle indels and
short-distance splice pairs. The constraint on number of mismatches (shown
for the value 1) determines a range of crossover points. (C) End indels are
tested in the distal 14 nt when the long region of the read has a sufficiently low
number of mismatches. (D) Long-distance splicing is detected by identifying
known or novel splice sites in single candidate regions within areas defined
by constraints on number of mismatches. Candidate regions with donor and
acceptor splice sites are then paired to reveal splice junctions.

increase in speed, in part because the generation and filtering steps greatly
limit the number of regions that must be verified.

2.5 Detecting insertions and deletions
Our program can detect alignments containing a single insertion or deletion,
with mismatches up to a user-specified maximum. Indel alignments can be
penalized relative to gap-free alignments using a user-defined penalty G.
Therefore, as the program imposes progressively stronger constraint levels
K of allowed mismatches, it also searches for indel alignments by imposing
a constraint level of (K −G) allowed mismatches with an indel.

Indels are detected using two algorithms, one that detects indels in the
middle of the short read (between the first and last 14mer), and one that
detects indels at the ends (within the first or last 14mer). End indels are
constrained to have a distal short fragment that is free of mismatches and
sufficiently long (as specified by the user) to determine its alignment reliably.
For both methods, the merging step of the complete set method, but not the
filtering calculation, is executed to produce all candidate regions having 14
or more consecutive matches with the read.

The method for detecting middle indels seeks a pair of candidate regions
that co-localize within the maximum allowed deletion and insertion sizes
(Fig. 5A). The position-based lower bound calculation can be applied to
both ends of the candidate pair to filter out pairs with too many mismatches.
Verification of the remaining candidate pairs at the nucleotide level identifies
the location of mismatches in each member of the pair, which can then be
analyzed to determine whether an area of possible crossovers exists within
the constraint level K of allowed mismatches (Fig. 5B). The middle indel
algorithm is efficient even for long indels because the genomic distance
between the two ends specifies the gap size and allows efficient verification
of mismatches without resorting to a dynamic programming algorithm.

Detection of end indels also depends upon candidate regions generated
by the complete set method, but filters single candidate regions rather than
pairs. Candidates are filtered using a variant of the position-based lower
bound calculation that ignores the first or last 14mer of the read, which is
made non-supporting by an end indel. Candidates that pass this filtering step
are verified against the genome to count the number of mismatches in the
long part of the read. If the number of mismatches is sufficiently low, the
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end region is tested across the range of possible end insertion and deletion
gap sizes for an indel. For each gap size, the program backtracks from the
end until the first mismatch is reached, and then along the main diagonal
to count the total number of mismatches near the end (Fig. 5C). An end
indel is detected if the distal segment is sufficiently long and if the sum of
mismatches in the long and distal regions is sufficiently low.

2.6 Detecting splice junctions
GSNAP can align transcriptional reads that cross exon–exon junctions
involving known or novel splice sites. For known splice sites, the program
depends upon a user-provided set of splice sites, which belong to one of four
categories: donors and acceptors on the plus genomic strand, and donors and
acceptors on the minus genomic strand. Identification of novel splice sites
is assisted by a probabilistic model, currently implemented as a maximum
entropy model (Yeo and Burge, 2004), which uses frequencies of nucleotides
neighboring a splice site to discriminate between true and false splice sites.

We use two methods for detecting splice junctions, one for short-distance
and one for long-distance splicing. Short-distance splicing involves two
splice sites that are on the same chromosomal strand, with the acceptor
site being downstream of the donor site, within a user-specified parameter
(default 200 000 nt). Short-distance splice junctions can be detected using a
method similar to that for middle deletions, except that the distance allowed
between candidate regions is much longer (Fig. 5B). As with middle indel
detection, the positions of mismatches in the two regions determine whether a
crossover area exists with the allowed number of mismatches (K −S), where
S is the opening gap penalty for a splice. This crossover area is searched
for donor and acceptor splice sites that are either known or supported by
a splice site model at a sufficiently high probability. The probability score
required is dependent on the length of short read sequence available for
alignment in the exon region. When the aligned exon sequence is short, on
the order of 12–20 nt, a relatively high probability score is needed. But when
the aligned exon sequence is sufficiently long, more than 35 nt, only the
expected dinucleotides at the intron end are needed.

For long-distance splicing, probability scores are also used to help find
novel splice sites, although the required probability scores are higher for a
given length of aligned sequence to compensate for the larger search space
over the entire genome. To detect cases of long-distance splicing, the program
identifies known or novel splice ends within single candidate regions, in the
area delimited by the constraint level K of allowed mismatches (Fig. 5D).
Candidate regions with donor and acceptor splice sites are then paired if
they have the same breakpoint on the read, and have an acceptable number
of total mismatches.

Reads that lie predominantly on one end of a splice junction may have too
little sequence at the distant end to identify the other exon. Such alignments
can still be reported by our program as partial splicing or ‘half intron’
alignments, if there is sufficient sequence on one end to determine a splice
site, but insufficient sequence on the other end for the other site.

2.7 Aligning paired-end reads
GSNAP can align paired-end reads, which are produced when both ends of a
nucleotide fragment are sequenced. Paired-end reads can also be generated by
circularizing a long fragment of 10 000 or more bases with a short linker, and
then cutting outside the linker to give reads at both ends of the long fragment.
Our algorithm attempts to find an optimal pair of mapping variants that are
concordant, meaning that they are within a user-defined range of expected
genomic distances and that their strand directions are consistent. Therefore,
GSNAP will favor concordant solutions involving suboptimal alignments on
one or both ends, even when better alignments can be found individually for
each end.

To consider pairs of alignments together, the program imposes
successively stronger constraint levels and attempts to align each end at
the given constraint level. For paired-end alignment, both ends of the read
contribute toward the overall score, so at a given constraint level K , the

program must accumulate alignments for each end up to that level. At each
constraint level, the program tries to pair the exhaustive set of alignments
found so far at each end to see if any pair is concordant. If so, the best
alignment or alignments are those with the lowest total score of mismatches
and penalties on the two ends. If suboptimal alignments are desired by the
user, the program proceeds to find additional alignments beyond the optimal
score level. If the algorithm reaches the maximum user-defined score limit
without finding any concordant pair, it reports the best individual alignments
for each end.

2.8 BS-converted DNA
An auxiliary program processes an existing reference sequence or reference
space hash table to produce two new hash tables, both representing the plus
strand of the genome, with one having C–T substitutions and the other having
G–A substitutions. The second hash table accommodates reads from the
minus strand, whose C–T substitutions appear as G–A substitutions on the
plus strand. The auxiliary program combines and sorts the positions for each
substituted 12mer into a single position list.

When GSNAP processes a BS read, it performs a C–T substitution of each
12mer in the read to check against the C–T hash table, and a G–A substitution
of each 12mer in the reverse complement of the read to check against
the G–A hash table. The generation and filtering steps behave as before.
The verification step compares the substituted read against the substituted
genomic region to identify mismatches. A special check is made in the
original read against the original genomic region for mismatches between
genomic-T and read-C, which are obscured by a C–T substitution.

3 RESULTS

3.1 Simulated reads
We compared GSNAP with several alignment programs that have
been benchmarked in previous studies: MAQ version 0.7.1, SOAP
version 1.11, Bowtie version 0.9.9.1, BWA version 0.4.9 and SOAP2
version 2.19. We generated 36, 70, and 100 nt reads that were
sampled uniformly from the human genome (NCBI release 36)
and generated datasets of different variant types by introducing
mismatches or indels at random. Short indels of 1–3 nt were required
to be at least 6 nt from the ends, and long indels at least 14 nt.
Programs were run on a Linux machine with 8 dual-core AMD 8220
Opteron CPUs at 2.8 GHz and 64 GB of RAM. All programs have
a multi-threaded mode, but were run in single-threaded mode in
our tests. To study each variant separately and to prevent programs
from searching for suboptimal hits, we provided each program with
parameters adequate to identify the given variant.

Alignment results (Table 1) show that programs could generally
align reads correctly with up to three mismatches, with SOAP2
limited to two mismatches, and with misses observed in 36 nt reads
by GSNAP and SOAP and in 70 nt reads by SOAP. Misses of
two and three mismatches in 36 nt reads by GSNAP were cases
where the number of mismatches exceeded the guarantee condition
of �L/14�−1 for exhaustiveness, essentially because mismatches
were spaced evenly enough to prevent a consecutive stretch of 14 nt
to match between the read and genome. Exact alignments were
identified most quickly by Bowtie and one-mismatch alignments by
SOAP2. Alignments of two and three mismatches in 70 and 100 nt
reads were identified at comparable speeds by BWA and GSNAP,
and GSNAP was fastest at identifying four or five mismatches. For
short indels, GSNAP showed perfect sensitivity, while BWA and
SOAP showed a miss rate of up to 5%. SOAP2 was unable to detect
indels in the single-end reads in our dataset, although it can detect
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Table 1. Results of read alignment algorithms on simulated reads

(Percent misses) Time

Variant GSNAP BWA Bowtie SOAP2 SOAP MAQ

36 nt reads
Exact 51 17 9 70 869 2248
1 mm 55 60 33 11 1157 2106
2 mm (1.0) 304 64 46 39 (2.9) 1470 6008
3 mm (11.9) 405 551 544 − (15.6) 1369 19 523
Ins, 1–3 640 (4.9) 767 − − (5.1) 5534 −
Del, 1–3 653 (3.3) 1016 − − (3.7) 4308 −
Ins, 4–9 (0.1) 507 − − − 31420 −
Del, 4–30 (0.1) 887 − − − − −

70 nt reads
Exact 15 23 9 13 1205 2180
1 mm 23 25 15 12 (0.1) 1564 2120
2 mm 45 33 48 67 (0.9) 2363 6175
3 mm 95 83 542 − (3.3) 2272 20 316
4 mm 325 373 − − (7.8) 2098 (2.4) 20 002
Ins, 1–3 245 (2.0) 323 − − (4.3) 15 516 −
Del, 1–3 263 (1.3) 425 − − (4.7) 14 645 −
Ins, 4–9 (0.1) 288 − − − − −
Del, 4–30 (0.1) 292 − − − − −

100 nt reads
Exact 15 29 11 10 − 2211
1 mm 21 30 16 13 − 2168
2 mm 33 35 56 73 − 6330
3 mm 50 52 620 − − 20 697
4 mm 82 137 − − − (0.5) 20 503
5 mm 155 543 − − − (2.1) 20 283
Ins, 1–3 269 (1.3) 218 − − − −
Del, 1–3 273 (0.8) 360 − − − −
Ins, 4–9 (0.1) 335 − − − − −
Del, 4–30 (0.1) 312 − − − − −

Times (in seconds) are for each set of 100 000 reads. For BWA, times include conversion
to genomic coordinates (∼8 s per dataset). For SOAP2, times exclude loading of indices
(∼35 s per dataset). Sensitivity was computed over reads that were unique (mapping
to one location in the genome) and non-upgradeable (not mapping to another genomic
location with a better variant type than the expected alteration). Misses, if any, are
represented by percentages in parentheses before the corresponding running time. Dashes
indicate variant types that could not be detected by the corresponding program. Variants:
mm, mismatch(es); ins, insertion; and del, deletion. Parameter flags used, where n is
number of mm in dataset: GSNAP (mm): -t 1 -m n. GSNAP (indel): -t 1 -m 0 -i 0. BWA
(mm): aln -o 0 -n n. BWA (indel): aln -n 3 -o 1 -O 1 -E 1. Bowtie: -f -k 10 –quiet -p 1 -v
n. SOAP2: -r 2 -v n. SOAP (mm): -s 12 -r 2 -w 10 -v n. SOAP (indel): -s 12 -r 2 -w 10
-v 0 -g 3. MAQ: map -C 10 -e 200 -n n. For the 3-mismatch dataset, Bowtie was also
run in its MAQ mode, by removing the -v flag for limiting the number of mismatches
and adding ‘-e 200’ to permit more mismatches. In that mode, times for the 36, 70 and
100 nt datasets were 46, 142 and 750 s, but miss rates were 57.2, 13.4 and 6.4%.

short indels in paired-end reads. In all but one dataset, GSNAP was
fastest at identifying short indels. For long indels, GSNAP was the
only program able to detect the alignments, except that long indels
in 36 nt reads could also be detected by SOAP at a much slower rate.
Detection of long indels by GSNAP occurred at speeds comparable
to those for short indels, and showed a miss rate of 0.1%, all due
to repetitive regions on one end of the indel, which the program is
designed to ignore.

We measured the amount of heap memory used by the programs
using the Valgrind Massif tool (Nethercote and Steward, 2007).
GSNAP used a peak of 86 MB on the exact match datasets, 101 MB
on the mismatch datasets and 170 MB on the indel datasets, with
memory usage varying from read to read. However, these values
do not measure memory used by GSNAP for its hash table position
file of size 3.8 GB and the compressed genome of size 1.15 GB,
which are accessed using memory mapping when available on the

host computer. In memory mapping, our program will run fastest
when sufficient physical memory is available to hold relevant parts
of the index files. Therefore, for optimum performance on a human-
sized genome, GSNAP should have access to 5 GB of physical
memory, although the program can still run, albeit more slowly,
if less memory is available. One advantage of memory mapping is
that multiple instances of GSNAP can run on the same computer
simultaneously and share the system memory that is mapped to the
index files, without each process having to allocate that memory
separately. For comparison, BWA used 2.2 GB on all datasets;
Bowtie used 1.1 GB on the exact match datasets and 2.2 GB on
the mismatch datasets; MAQ used 302 MB on all datasets; and
SOAP used 14 GB on all datasets. Memory usage of SOAP2 could
not be determined because source code is not available and the
binary program was compiled without the flag necessary for memory
profiling.

We also evaluated the ability of GSNAP to detect intragenic
and intergenic exon–exon junctions in simulated reads, using either
known splice sites from RefSeq or only novel splice site detection
(These tests were performed on a earlier version of GSNAP that
used absolute probability thresholds, instead of the sliding scale
used in the current version). Simulated reads were based upon
RefSeq splice sites, and GSNAP achieved perfect sensitivity when
it had access to that information, but missed 0.1% of intragenic
events and 5% of intergenic events when it relied solely upon
probabilistic splice site models. Missed splice events were due to
known splice sites with model scores below the default probability
threshold of 0.90. Differences in sensitivity between intragenic
and intergenic splice detection were due to the different criteria in
GSNAP for short-distance splicing, which used a lower probability
threshold (default 0.50) for the second splice site. Running times
on datasets of 100 000 reads were 48, 114 and 183 s for 36, 70 and
100 nt intragenic reads, and 122, 211 and 287 s for intergenic reads.
These running times are faster than those for the benchmarking of
mismatches and indels, because the spliced reads were generated
from the coding part of the genome, which is less repetitive.

3.2 Transcriptional reads
We measured the impact of complex variant detection and SNP
tolerance by GSNAP on actual data taken from universal human
reference RNA (UHR, Stratagene catalog number 740 000), used in
the MAQC (MicroArray Quality Control) project (Canales et al.,
2006) and assayed by Illumina on their Solexa Genome Analyzer.
From this dataset, we sampled 100 000 reads uniformly among the
dataset of 50 nt reads. Unlike simulated reads, actual reads lack
information about their original genomic location, so we determined
the performance of programs using alignment yield, which is the
percentage of reads that could be aligned by each program with
various settings of mismatches, splicing or indels. We tested GSNAP
against NCBI human genome version 36 and also against a reference
space that covered 12 million SNPs from dbSNP version 129.

Alignment yields were 70% for two mismatches and 74% for three
mismatches (Table 2). Alignment yield increased when programs
were allowed to identify more complex variants. The addition of
splicing involving known splice sites to GSNAP increased alignment
yields by 8–9%, and the further addition of novel splice sites
increased alignment yields by another 0.3–0.6%. Allowing indels
increased alignment yield by a further 1%.
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Table 2. Effect of splicing, indels and SNP tolerance on transcriptional dataset

Alignment yield (%) SNP effect on alignment (%) Time (s)

Variants allowed Non-SNP SNP New Same Superset Subset Diff Total Non-SNP SNP

≤2 mismatches 69.7 70.2 0.5 1.7 4.9 0.4 0.1 7.5 52 57
Above plus known splicing 78.7 79.1 0.5 1.8 4.8 0.3 0.2 7.6 381 457
Above plus novel splicing 79.0 79.5 0.5 1.9 4.8 0.2 0.3 7.7 457 522
Above plus indels 80.2 80.7 0.5 1.8 4.9 0.2 0.5 8.0 725 905

≤3 mismatches 73.9 74.3 0.4 2.0 5.2 0.4 0.1 8.1 161 214
Above plus known splicing 82.2 82.6 0.4 2.1 5.1 0.3 0.2 8.0 530 668
Above plus novel splicing 82.8 83.1 0.4 2.2 5.1 0.3 0.3 8.3 624 755
Above plus indels 83.8 84.2 0.4 2.1 5.1 0.3 0.6 8.5 949 1262

Table 3. Effect of simulated BS treatment

Alignment uniqueness (%)

Length (nt) Variant Genomic BS Difference

36 Exact 87.1 81.6 5.5
1 mismatch 86.7 80.6 6.0
2 mismatches 85.3 78.7 6.5

70 Exact 95.0 92.4 2.6
1 mismatch 94.9 92.1 2.8
2 mismatches 94.7 91.7 3.0

100 Exact 96.6 95.3 1.3
1 mismatch 96.6 95.2 1.4
2 mismatches 96.5 95.1 1.4

The introduction of SNP tolerance resulted in only a minor
increase in alignment yields. However, 7–8% of alignment results
were affected in some way by a SNP. SNP tolerance gave an
alignment where none was previously found in only 0.4–0.5% of
cases. In 5% of cases, known SNPs revealed additional genomic
locations for a given read beyond the original locations, resulting
in a superset of the original results. In 0.2–0.4% of cases, SNP
tolerance yielded a subset of genomic locations, meaning that some
of the mismatches in the original alignments could be resolved
in favor of known SNPs. In 1–2% of cases, all mismatches in
the original alignments were at known SNP locations, leaving the
genomic locations the same, but allowing nucleotide differences to
be interpreted as matches to minor alleles rather than as mismatches.
In a small fraction of cases, SNP tolerance gave a significantly
different set of results compared with the original.

3.3 BS-converted reads
We used the simulated datasets from Section 3.1 with mismatches
of 0, 1 and 2 nt, and substituted thymine for cytosine with a
probability of 95%, ignoring sequence contexts, such as non-island
CG dinucleotides in eukaryotes (Goll and Bestor, 2005) or in CG,
CHG and CHH patterns in plants (Cao and Jacobsen, 2002), where
methylcytosines occur more often. We aligned the original reads
with the standard version of GSNAP and the substituted reads
with the methylation flag turned on. Results show that thymine

substitution had a minor effect on the ability of GSNAP to identify
the original genomic position, due to increased ambiguity in aligning
some reads (Table 3). The fraction of additional reads giving non-
unique positions in the genome was 5.5% of 36 nt reads, 2.6% of
70 nt reads and 1.3% of 100 nt reads, in the exact match datasets, and
slightly higher fractions in the datasets with one or two mismatches.

4 DISCUSSION
The methods described in this paper expand the scope of variants
that can be detected in reads, and should therefore increase the
utility of next-generation sequencing data. The ability to recognize
a wide range of variants should also improve mapping accuracy by
recognizing the correct genomic origin of variant reads. Likewise,
the SNP-tolerance feature implemented in our program should help
resolve mappings in certain genomic regions. The utility of this
feature should be measured not just by the 7–8% of reads affected,
but by its contribution towards making correct biological inferences
in the subsequent analysis pipeline. Other researchers (Manske and
Kwiatkowski, 2009) have also found cases where SNP-tolerant
alignment facilitates the alignment of reads with minor alleles.

We have developed an algorithm to meet the specific needs
of short-read sequence analysis for both speed and sensitivity
in detecting complex variants and splicing. The strength of
our algorithm is its successively constrained search strategy for
generating candidate genomic regions by merging position lists from
oligomers across the entire read, and filtering them using count-
or pattern-based lower bound calculations. Our search procedure
operates at the oligomer level, which differs from the nucleotide-
level backtracking procedures used in BWT-based programs to
identify mismatches and short indels.

By filtering the set of candidate regions, our intersection process
represents a significant efficiency improvement over the seed-and-
extend strategy, used in BLAT and other seed-based alignment
programs, which find genomic regions based on a single q-mer and
then test each of those regions in a time-consuming verification step.
Some programs, such as ELAND, further restrict the seed to be at
the beginning of the short read. The use of seeds can be a highly
effective heuristic, and BWA can run faster by using a seeding mode
that allows a certain number of mismatches in the initial part of the
short read. Our method can be thought of as trying all possible
seeds simultaneously over the entire short read, and therefore has
the feature of not favoring one part of the read over another.
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Our intersection procedure also provides an efficient alternative
to the q-gram procedure, used in SHRiMP (Rumble et al., 2009)
and RazerS, which scans the entire genome using a sliding
window and counts q-mers within bins to find candidate genomic
regions (Rasmussen et al., 2006). The q-gram procedure allows for
two or more indels in a single read, which is not currently allowed by
GSNAP, although our algorithm could be modified to identify them.
Another difference is that the q-gram procedure defines alignment
differences as an edit distance, where each nucleotide in a gap counts
as a difference, so longer indels are considered more distant. In
contrast, GSNAP uses only an opening gap penalty in scoring indel
alignments, so it can identify long indels more readily.

Our program also differs from several alignment programs,
including MAQ, RMAP, SHRiMP, Bowtie, BWA and SOAP2,
which have the ability to use quality scores to rank alignments.
Although quality scores could be applied in the validation step of
our algorithm, it remains unclear to us how best to make tradeoffs
between quality scores and alignment results, for example, how
to choose between an alignment with one mismatch at a high-
quality score or one with two mismatches at lower quality scores.
Color space reads produced by ABI SOLiD technology require some
extensions to our algorithm, and we are working to implement this
capability in our program.

Although our results and experience indicate that our program
has practical utility for analyzing next-generation sequencing data,
our research is ongoing. In particular, longer reads will entail more
flexibility in alignment and may require the enhancement of more
general cDNA–genomic alignment programs, such as our GMAP
program. Future biological research should benefit from having
a diversity of bioinformatics methods and programs to meet the
various needs of sequence analysis.
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