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ABSTRACT 

Motivation: High-throughput sequencing has made the analysis of 

new model organisms more affordable. Although assembling a new 

genome can still be costly and difficult, it is possible to use RNA-

seq to sequence mRNA. In the absence of a known genome, it is 

necessary to assemble these sequences de novo, taking into 

account possible alternative isoforms and the dynamic range of 

expression values. 

Results: We present a software package named Oases designed 

to heuristically assemble RNA-seq reads in the absence of a 

reference genome, across a broad spectrum of expression values 

and in presence of alternative isoforms. It achieves this by using an 

array of hash lengths, a dynamic filtering of noise, a robust 

resolution of alternative splicing events, and the efficient merging of 

multiple assemblies. It was tested on human and mouse RNA-seq 

data and is shown to improve significantly on the transABySS and 

Trinity de novo transcriptome assemblers. 

Availability: Oases is freely available under the GPL license at 

www.ebi.ac.uk/~zerbino/oases/ 

Contact: dzerbino@ucsc.edu 

Supplementary information: Supplementary information is 

available at Bioinformatics online. 

1 INTRODUCTION  

Next-Generation Sequencing of expressed mRNAs (RNA-seq) 

is gradually transforming the field of transcriptomics (Blencowe 

et al., 2009, Wang et al., 2009). The first attempts to discover 

expressed gene isoforms relied on mapping the RNA-seq reads 

onto the exons and exon-exon junctions of a known annotation 

(Mortazavi et al., 2008, Sultan et al., 2008, Wang et al., 2008, 

Jiang and Wong, 2009, Richard et al., 2010). Consequently, 

reference-based ab initio methods have been developed to 

assemble a transcriptome from RNA-seq data using read 

alignments alone, inferring the underlying annotation (Denoeud et 

al., 2008, Yassour et al., 2009, Trapnell et al., 2010, Guttman et 

al. 2010).  

                                                        
*To whom correspondence should be addressed.  

Unfortunately, the use of a reference genome is not always 

possible. Despite the drop in the cost of sequencing reagents, the 

complete study of a genome, from sampling to finishing the 

assembly is still costly and difficult. Sometimes, the model being 

studied is sufficiently different from the reference because it 

comes from a different strain or line such that the mappings are 

not altogether reliable. For these cases, de novo genome 

assemblers have been employed to create transcript assemblies, or 

transfrags, from the RNA-seq reads in the absence of a reference 

genome (Wakaguri et al. 2009, Collins et al., 2008, Birol et al. 

2009, Jackson et al., 2009).  

However, these short read genomic assemblers, based mainly 

on de Bruijn graph genomic assemblers, make implicit 

assumptions regarding the evenness of the coverage and the 

colinearity of the sequence. Indeed, the coverage depth fluctuates 

significantly between transcripts, isoforms, and regions of the 

transcript, therefore it cannot be used to determine the uniqueness 

of regions or to isolate erroneous sequence. In addition, these 

tools are geared to produce long linear contigs from the given 

sequence, not to detect the overlapping sequences presented by 

isoforms of a single gene. This affects a number of steps, 

including error correction, repeat detection and read pair usage. 

These methods are therefore not necessarily suited to process 

transcriptome data which does not conform to either of these 

assumptions.  

More recently, transcriptome assembly pipelines were 

developed to postprocess the output of de novo genome 

assemblers Velvet and ABySS (Surget-Groba et al., 2010, 

Robertson et al., 2010, Martin et al., 2010). The common idea 

shared by these pipelines is to run an assembler at different k-mer 

lengths and to merge these assemblies into one. The rationale 

behind this approach is to merge more sensitive (lower values of 

k) and more specific assemblies (higher values of k).  

The pipeline presented by Robertson et al (2010), transABySS, 

also handles alternative splicing variants. It detects them by 

searching for connected groups of contigs such that they are 

connected in a characteristic bubble, and one of the contigs has a 

length of exactly (2k-2). These bubbles are first removed, then 

added to the final assemblies, to reconstruct alternate variants. 

A variety of algorithmic researchers have used splicing graphs 

to represent alternative splicing which have a direct relationship 
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to de Bruijn graphs, as pointed out by Heber et al. (2002). This 

homology between data structures opens the possibility of a de 

novo short read transcriptome assembler, as illustrated by the 

Trinity algorithm (Yassour et al. 2011). Trinity starts by 

extending contigs greedily, connecting them into a de Bruijn 

graph, then extracting sufficiently covered paths through this 

graph. Trinity is designed to reconstruct highly expressed 

transcripts to full length using only one k-mer length. 

We present Oases, a de novo transcriptome assembler that 

combines these advances. Oases merges the use of multiple k-

mers presented in (Surget-Groba et al., 2010, Robertson et al., 

2010) with a topological analysis similar to that presented by 

Yassour et al. (2011). It uses dynamic error removal adapted to 

RNA-seq data and implements a robust method to predict full 

length transfrags, even in cases where noise perturbs the topology 

of the graph. Single k assemblies are merged to cover genes at 

different expression levels without redundancy. 

We tested the latest version of Oases (0.2.01) on experimental 

datasets and found that Oases produces longer assemblies than 

previous de novo RNA-seq assemblers. Oases was compared to a 

reference-based ab initio algorithm, Cufflinks (Trapnell et al. 

2010). The latter approach has a considerable advantage in low 

expression genes, as it can join otherwise disjoint reads by virtue 

of their genomic positions, but at high read coverage, Oases’ 

sensitivity approaches that of reference-based ab initio 

algorithms. We also examined the effect of coverage depth, hash 

length, alternative splicing and assembly merging on the quality 

of assemblies.  

2 METHODS 

2.1 Overview 

The Oases assembly process, explained in detail below and 

illustrated on Figure 1, consists of independent assemblies, which 

vary by one important parameter, the hash (or k-mer) length. In 

each of the assemblies, the reads are used to build a de Bruijn 

graph, which is then simplified for errors, organized into a 

scaffold, divided into loci, and finally analyzed to extract 

transcript assemblies, or transfrags. Once all of the individual k-

mer assemblies are finished, they are merged into a final 

assembly. 

2.2 Contig Assembly 

The Oases pipeline receives as input a preliminary assembly 
produced by the Velvet assembler (Zerbino and Birney, 2008) 
which was designed to produce scaffolds from genomic readsets. 
Its initial stages, namely hashing and graph construction can be 
used indifferently on transcriptome data. We only run these stages 
of Velvet to produce a preliminary fragmented assembly, 
containing the mapping of the reads onto a set of contigs.  

However, the later stage algorithms, Pebble and Rock Band, 
which resolve repeats in Velvet, are not used because they rely on 
assumptions related to genomic sequencing (Zerbino et al., 2009). 
Namely, the coverage distribution should be roughly uniform 
across the genome and the genome should not contain any 
branching point. These conditions prevent those algorithms from 
being reliable and efficient on RNA-seq data. 

 

 
Fig. 1. Schematic overview of the Oases pipeline: (1) Individual reads are 

sequenced from an RNA sample, (2) contigs are built from those reads, 

some of them are labeled as long (clear), others short (dark), (3) long 

contigs, connected by single reads or read-pairs, are grouped into 

connected components, called loci, (4) short contigs are attached to the 

loci, (5) the loci are transitively reduced. Tranfrags are then extracted 

from the loci. The loci are divided into 4 categories: (A) chains, (B) 

bubbles, (C) forks and (D) complex (i.e. all the loci which did not fit into 

the previous categories). 

2.3 Contig Correction 

After reading the contigs produced by Velvet, Oases proceeds 
to correct them again with a set of dynamic and static filters.  

The first dynamic correction is a slightly modified version of 
Velvet’s error correction algorithm, TourBus. TourBus searches 
through the graph for parallel paths that have the same starting 
and end node. If their sequences are similar enough, the path with 
lower coverage is merged into the path with higher coverage, 
irrespective of their absolute coverage. In this sense, the TourBus 
algorithm is adapted to RNA-seq data and fluctuating coverage 
depths. However, for performance issues, the Velvet version of 
TourBus only visits each node once, meaning that it does not 
exhaustively compare all possible pairs of paths. Given the high 
coverage of certain genes, and the complexity of the 
corresponding graphs, with numerous false positive paths, it is 
necessary for Oases to exhaustively examine the graph, visiting 
nodes several times if necessary. 

In addition to this correction Oases includes a local edge 
removal. For each node, an outgoing edge is removed if its 
coverage represents less than 10% of the sum of coverages of 
outgoing edges from that same node. This approach, similar to the 
one presented by Yassour et al. (2011), is based on the 
assumption that on high coverage regions, spurious errors are 
likely to reoccur more often. 

Finally, all contigs with less than a static coverage cutoff (by 
default 3x) are removed from the assembly. The rationale for this 
filter is that any transcript with such a low coverage cannot be 
properly assembled in the first place, so it is expedient to remove 
them from the assembly, along with many low coverage contigs 
created by spurious errors. 

2.4 Scaffold construction 

The distance information between the contigs is then 

summarized into a set of distance estimates called a scaffold, as 

described in (Zerbino et al., 2009). Because a read in a de Bruijn 

graph can be split between several contigs, the distance estimate 

for a connection between two contigs can be supported by both 

spanning single reads or paired-end reads. 

The total number of spanning reads and pair-end reads 

confirming a connection is called its support. A connection which 
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is supported by at least one spanning read is called direct, 

otherwise, it is indirect.  

Connections are assigned a total weight. It is calculated by 

adding 1 for each supporting spanning read and a probabilistic 

weight for each spanning pair, proportional to the likelihood of 

observing the paired reads at their observed positions on the 

contigs given the estimated distance between the contigs and 

assuming a normal insert length distribution model. 

2.5 Scaffold filtering 

Much like the contig correction phase, several filters are 

applied to the scaffold: static coverage thresholds for the very low 

coverage sequences, and a dynamic coverage threshold which 

adapts to the local coverage depth.  

Because coverage is no longer indicative of the uniqueness of a 

sequence, contig length is used as an indicator. Based on the 

decreasing likelihood of high identity conservation as a function 

of sequence length (Whiteford et al., 2005), contigs longer than a 

given threshold (by default (50+k-1) bp) are labeled as long and 

treated as if unique, and the other nodes are labeled as short. 

Connections with a low support (by default 3x or lower) or 

with a weight below 0.1 are first removed. Two short contigs can 

only be joined by a direct connection with no intermediate gap. A 

short and a long contig can only be connected by a direct 

connection.  

Finally, connections between long contigs are tested against a 

modified version of the statistic presented in (Zerbino et al., 

2009), which estimates how many read pairs should connect two 

contigs given their respective coverages and the estimated 

distance separating them (see Supplement). Indirect connections 

with a support lower than a given threshold (by default 10% of 

this expected count) are thus eliminated.  

2.6 Locus construction 

Oases then organizes the contigs into clusters called loci, as 

illustrated on Figure 1. This terminology stems from the fact that 

in the ideal case, where no gap in coverage or overlap with 

exterior sequences complicate matters, all the transcripts from 

one gene should be assembled into a connected component of 

contigs. Unfortunately, in experimental conditions, this 

equivalence between components and genes cannot be 

guaranteed. It is to be expected that loci sometimes represent 

fragments of genes, or clusters of homologous sequences. 

Scaffold construction takes place in two stages similarly to the 

approach described by Butler et al. (2008). Long contigs are first 

clustered into connected components. These long nodes have a 

higher likelihood of being unique, therefore it is assumed that two 

contigs which belong to the same component also belong to the 

same gene. To each locus are added the short nodes which are 

connected to one of the long nodes in the cluster.  

2.7 Transitive reduction of the loci 

For the following analyses to function properly, it is necessary 

to remove redundant long distance connections, and retain only 

connections between immediate neighbours, as seen on Figure 1. 

For example, it is common that two contigs which are not 

consecutive in a locus are connected by a paired-end read. 

A connection is considered redundant if it connects two nodes 

that are connected by a distinct path of connections such that the 

connection and the two paths have comparable lengths. The 

transitive reduction implemented in Oases is inspired from the 

one described in (Myers, 2005) but had to be adapted to the 

conditions of short read data. In particular, short contigs can be 

repeated or even inverted within a single transcript and form 

loops in the connection graph. Because of this, occasional 

situations arise where every connection coming out of a node can 

be transitively reduced by another one, thus removing all of them, 

and breaking the connectivity of the locus. To avoid this, a limit 

is imposed on the number of removed connections. If two 

connections have the capacity to reduce each other, the shortest 

one is preserved. 

2.8 Extracting transcript assemblies 

The sequence information of the transcripts is now contained in 

the loci. These loci can be fragmented because of alternative 

splicing events which cause the de Bruijn graph to have a branch. 

Oases therefore analyses the topology of the loci to extract full 

length isoform assemblies. 

In many cases, the loci present a simple topology which can be 

trivially and uniquely decomposed as one or two transcripts. We 

define 3 categories of trivial locus topologies (see Figure 1): 

chains, forks and bubbles, which if isolated from any other 

branching point, are straightforward to resolve. These three 

topologies are easily identifiable using the degrees of the nodes. 

Oases therefore detects all the trivial loci and enumerates the 

possible transcripts for each of them.  

Because the above exact method only applies to specific cases, 
an additional robust heuristic method is applied to the remaining 
loci, referred to as complex loci. Oases uses a reimplementation 
of the algorithm described in (Lee, 2003), which efficiently 
produces a parsimonious set of putative highly expressed 
transcripts, assuming independence of the alternative splicing 
events. 

This extension of the algorithm is quite intuitive, since there is 
a direct analogy between the de Bruijn graph built from the 
transcripts of a gene and its splicing graph, as noted by Heber et 
al. (2002). Using dynamic programming, it enumerates heavily 
weighted paths through the locus graph in decreasing order of 
coverage, until either all the contigs of the locus are covered, or a 
specified number of transcripts is produced (by default 10).  

As in the transitive reduction phase, this algorithm had to be 
slightly modified to allow for loops in the putative splicing graph 
of the locus. Loops are problematic because their presence can 
prevent the propagation of the dynamic programming algorithm 
to all the contigs of a locus. When a loop is detected, it is broken 
at a contig which connects the loop to the rest of the locus, so as 
to leave a minimum number of branch points, as described in the 
Supplemental Material.  

2.9 Merging assemblies with Oases-M  

De Bruijn graph assemblers are very sensitive to the setting of 
the hash length k. For transcriptome data, this optimization is 
more complex as transcript expression levels, and therefore 
coverage depths, are distributed over a wide range. A way to 
avoid the dependence on the parameter k is to produce a merged 
transcriptome assembly of previously generated transfrags from 
Oases.  

Oases is run for a set of [kMIN , . . . , kMAX] values and the 
output transfrags are stored. All predicted transfrags from runs in 
the interval are then fed into the second stage of the pipeline, 
Oases-M, with a user selected kMERGE. A de Bruijn graph for 
kMERGE is built from these transfrags. After removing small 
variants with the Tourbus algorithm, any transfrag in the graph 
that is identical or included in another transfrag is removed. The 
final assembly is constructed by following the remaining 
transfrags through the merged graph. 
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3 RESULTS 

3.1 Datasets 

Two data sets were retrieved from the Nucleotide Archive 

(http://www.ebi.ac.uk/ena/). A human data set was produced in a 

study by Heap et al. (2010), where poly(A)-selected RNAs from 

human primary CD4(+) T cells were sequenced. Paired-end reads 

of length 45 bp with an insert size of 200 bps from one human 

individual (studyID SRX011545) were downloaded.  

A mouse data set was taken from the study of Trapnell et al. 

(2010). In a timeseries experiment of C2C12 myoblast mouse 

cells  paired-end reads of length 75bp with an insert size of 

300bps were sequenced. Read data from the 24hr timepoint 

(study id SRX017794) was used.  

To reduce the amount of erroneous bases, both paired-end 

datasets were processed by (i) removing Ns from both ends, (ii) 

clipping bases with a Sanger quality ≤ 10, and (iii) removing 

reads with more than 6 bases with Sanger quality ≤ 10 after steps 

(i) and (ii), leading to a total of 30,940,088 and 64,441,708 reads 

for human and mouse, respectively. 

3.2  Assemblies and alignments 

All experiments were run with Oases version 0.2.01, and 

Velvet 1.1.06 and the coverage cutoff and the minimum support 

for connections were set to 3.  

TransABySS 1.2.0 was run with ABySS 1.2.5 through the first 

two stages of transABySS (assembly and merging, before 

mapping to a reference genome is required). Instead of just 

running with the default parameters, we tested an array of 

parameters, and chose the best for those datasets, namely n = 10, 

c = 3 and ABYSS with the options −E0 (cf. Supplement). 

Trinity (ver. 2011-08-20) was run with the default parameters. 

In particular, the k-mer length of 25 could not be modified.  

Potential poly-A tails after assembly were removed using the 

trimEST program from the EMBOSS package (Rice et al., 2000) 

before alignment. Subsequently, predicted transfrags of the 

methods were aligned against the genome using Blat (Kent, 

2002). 

The Cufflinks assemblies are those published by its authors. 

RPKM Expression values for annotated genes have been 

computed by aligning reads against annotated Ensembl 57 

transcripts with RazerS (Weese et al., 2009), see Supplement.  

3.3 Metrics 

In all the following experiments, we focused on a simple set of 

metrics as used in (Robertson, 2010, Yassour, 2011): nucleotide 

sensitivity, nucleotide specificity, percentage of transcripts 

assembled to 100% of their length, percentage of transcripts 

assembled to 80% of their length. The Blat mappings of the 

assemblies were compared to the Ensembl annotations of the 

corresponding species.  

3.4  Comparing Oases to Velvet 

To evaluate the added value of the topology resolution within 

each loci, we compared the Oases contigs from the Velvet 

assemblies which they are built from. Table 1 shows how the 

Oases assemblies significantly improve on the Velvet assemblies. 

This confirms the intuition that in the presence of alternative 

splicing and dynamic expression levels, the assembly is broken 

by breaks in the graph, which can be resolved by topological 

analysis and adapted error correction as described in the Methods 

section. 

As an example, the percentage cutoff for local edge removal 

was modulated (see Supplemental Table 1). These results show 

how dynamic filters improve the quality of the assembly. 

 
Table 1: Comparison of Velvet and Oases assemblies on the human 

RNA-seq data set. The total number of transfrags longer that 100bp 

(Tfrags), nucleotide sensitivity and specificity, as well as the number of 

full length or 80% length reconstructed Ensembl transcripts are shown. 

3.5 Impact of k-mer lengths 

One of the major parameters in de Bruijn graph assemblers is 

the hash length, or k-mer length. Comparing single-k assemblies 

performed by Oases, it is possible to observe that this parameter 

is crucial in RNA-seq assembly. Figure 2 shows how the k-mer 

length is closely related to the expression level of the transcripts 

being assembled. As expected, the assemblies with longer k 

values perform best on high expression genes, but poorly on low 

expression genes. However, short k-mer assemblies have the 

disadvantage of introducing misassemblies, as shown in 

Supplemental table 7. 

3.6 Impact of merging assemblies  

In addition, Figure 2 shows the same statistics for the merged 

assembly by Oases-M, which is significantly superior to each of 

the individual values. This result illustrates how the different 

assemblies do not completely overlap. Further, Supplemental 

Figure 2 shows how each single k-mer assembly resolved 

transcripts at different expression levels.  

We compared merging different intervals of k-mers (see 

Supplement). The wider the interval, the better the results. To 

determine bounds on this interval we arbitrarily bounded on the 

low values with 19, on the assumption that smaller k-mers are 

very likely to be unspecific for mammalian genomes (Whiteford 

et al., 2005). In theory, on the upper end, all the k-mer values (up 

to read length) could be used. To avoid wasting resources, we 

measured the added value of each new assembly (see 

Supplement). As expected, marginal gains progressively 

diminish, and this metric could be used to determine how large a 

spectrum of k-mers to use. We also investigated which kMERGE  

should be used and we found that kMERGE =27 works well with 

little difference for higher values (see Supplemental Table 4) and 

is therefore used for all analyses in the paper. 

3.7 Comparing Oases to other RNA-seq de 

novo assemblers 

Oases-M was compared to existing RNA-seq de novo 

assemblers, transABySS (Richardson et al., 2010) and Trinity 

(Yassour et al., 2011). The previous human dataset and a mouse 

dataset were used for the comparison. The datasets have different 

read lengths and sequencing depth, as detailed in Methods. Both 

k-

mer 

Method Tfrags 

>100bp 

Sens. 

(%) 

Spec. 

(%) 

Full  

Lgth. 

80%  

lgth. 

19 
Velvet 89789 12.45 83.58 42 78 

Oases 67319 17.23 92.55 828 7,437 

25 
Velvet 88042 16.13 89.62 92 516 

Oases 53504 14.97 93.0 754 6,882 

31 
Velvet 55986 12.78 93.16 213 1,986 

Oases 47878 10.55 94.63 429 3,751 

35 
Velvet 36507 7.9 94.81 107 1,660 

Oases 34012 6.67 95.99 196 1,885 
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transABySS and Oases were run for k-mer length 19 to 35bp on 

the human dataset. Because the mouse reads are longer, these two 

assemblers were run for k-mers 21-35 on that dataset. The highest 

value of k was determined by an approach similar to that used on 

the human data (See Supplement for data). Trinity is fixed by 

implementation at k=25bp.  

 
Fig. 2. Comparison of single k-mer Oases assemblies and the merged 

assembly from kMIN=19 to kMAX=35 by Oases-M, on the human dataset. 

The total number of Ensembl transcripts assembled to 80% of their length 

is provided by RPKM gene expression quantiles of 1,464 genes each. 

Figure 3 shows the number of reconstructed Ensembl 

transcripts for each assembler on both datasets, separated by 

expression quantiles. The main observation is that all assemblers 

do not behave equally with respect to expression level. Trinity 

appears to perform best on high expression genes, whereas 

transABySS performs best on low expression genes. Oases 

performs comparatively well throughout the spectrum of 

expression levels, hence the greater overall success (see Table 2). 

Regarding correctness, we computed the number of 

misassemblies, and the qualities of the different assemblers are 

comparable (see Supplement). Transfrags mapped with high 

confidence to the genome occasionally differ from the known 

annotation. For example, Oases produced 237 (resp. 390) 

transfrags longer than 300bp which mapped to the reference 

genome, but did not overlap with the human (resp. mouse) 

annotation. 

In Figure 4 the overlap of full length mouse transcripts 

reconstructed by the three methods is shown. It is interesting to 

note that although the results greatly overlap, the different 

assemblers succeeded in assembling different transcripts.  

3.8 Comparing de novo and reference-based 

assemblers 

Oases and the other de novo assemblers were finally compared 

on the mouse data to a reference-based assembly algorithm, 

Cufflinks (Trapnell et al., 2010), on the mouse dataset. As could 

be expected, Cufflinks generally outperforms the de novo 

assembly algorithms, as it benefits from using the reference 

genome to anchor its assemblies (see Figure 3). Nonetheless, it is 

interesting to note that as expression level and therefore coverage 

depth go up, the gap narrows. 

Beyond assembling more transcripts, it is also important to 

recover multiple isoforms for each gene. For each assembled 

transcript, the average number of additionally assembled 

transcripts from the same gene are respectively 1.21, 1.25, 1.01 

and 1.56 for Oases, trans-ABySS, Trinity and Cufflinks. 

Cufflinks performs better in that respect, whereas Trinity is less 

sensitive. 

3.9 Runtime and Memory 

A de novo transcriptome assembly is a resource intensive task. 

Velvet uses multithreading but Oases currently does not. The 

complete merged assembly for human took ~3.2 hours and 6.1 

GB of peak memory on a 48 core AMD Opteron machine with 

265GB RAM. The merged assembly for mouse took ~10.3 hours 

and 15.1 GB peak memory. 

4 DISCUSSION 

We have shown that merging different single k assemblies is 

beneficial, in concordance with previous work (Surget-Groba et 

al., 2010, Robertson et al., 2010). Oases employs dynamic 

cutoffs, where possible, to allow for a robust reconstruction with 

different k values. However, detailed parameter optimization for 

Oases and trans-ABySS may lead to further improvements.  

Overall, the de novo methods produced large numbers of 

misassemblies. Given the dynamic ranges involved, the exact 

parameter settings of these programs define a trade-off between 

sensitivity and accuracy. In these experiments, Oases tends to be 

more sensitive, Trinity more accurate. The correlation of small k-

mer assemblies and misassembly rates suggests that homologies 

between genes are the main source of errors. As reads get longer, 

and coverage depths greater, sensitivity will only increase, and 

users will probably avoid the shorter k-mer lengths for greater 

accuracy. Short k-mers will only be necessary to retrieve the very 

rare transcripts. 

An independent but significant factor to these assemblies is 

read preprocessing, as read error removal has already been shown 

to have a significant impact in the context of de novo genome 

assembly (Smeds et al. 2011). 

Interestingly, the comparison of reconstructed transcripts for 

the three de novo methods in Figure 4 reveals that each method 

outperforms the others on a separate set of transcripts. These 

differences in performance are probably due to the different 

strategies employed to remove errors. A more aggressive method, 

which discards more data, would presumably end up with many 

gaps on low expression data, whereas a more lenient algorithm 

would leave too many ambiguities at high coverage.  

In particular, it appears that the performance of all the 

assemblers sometimes drops at very high coverage depths. This is 

probably linked to increased noise. Indeed, this drop is especially 

marked for trans-ABySS, which, to our knowledge, is the only of 

the three de novo assemblers not to integrate dynamic filters 

which adapt with coverage depth. 
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Intriguingly, trans-ABySS outperformed Trinity in our 

experiments, contrary to the observation of Yassour et al. (2011). 

This could not be due to the parameterization of Trinity, which 

cannot be parameterized apart from the insert length. Instead, the 

larger k range used for trans-ABySS and the lower sequencing 

depth in our analyzed data sets may explain this discrepancy, as 

trans-ABySS was shown to perform especially well for low to 

medium expressed genes.   

Similarly, our experiments on mouse data show a bigger gap 

between Cufflinks and the de novo assemblers  than observed by 

Yassour et al. (2011). In their work, the comparison was focused 

on the set of  “oracle” transcripts, which show sufficient coverage 

of exact k-mers in the reads. However, no such restriction was 

applied here, and Cufflinks, surpasses the de novo methods for 

low to medium expression ranges, where coverage is sparse. 

In this study we did not analyze strand-specific RNA-seq 

datasets. However, these datasets become more available (Levin, 

2010) Oases already supports this data. During the hashing phase, 

reverse complement sequences can be stored separately instead of 

being joined as the two strands of the same sequence. 

5 CONCLUSION 

Oases provides users with a robust pipeline to assemble 

unmapped RNA-seq reads into full length transcripts. Oases was 

designed to deal with the conditions of RNA-seq, namely uneven 

coverage and alternative splicing events. 

Our results show how crucial it is to explore and understand 

the relevant conditions. Alternative splicing can significantly 

confound the assembly, and has to be specifically addressed. 

Gene expression levels are a major factor determining the 

sensitivity of an algorithm. High coverage genes require more 

selective methods, whereas low coverage genes favor more 

sensitive algorithms. This is why exploring a range of k-mer 

lengths is key to success. 

In the light of these results, Oases was designed to perform 

well overall by adapting to these varying conditions, and 

succeeded in obtaining superior overall results compared to 

previously published RNA-seq de novo assemblers. Nonetheless, 

it also appears that merging assemblies from a diversity of 

algorithms could be beneficial. This is probably due to the 

Fig. 3 Reconstruction efficiency of Ensembl transcripts for different RNA-seq de novo assembly methods (Oases-M, Trinity, and transABySS) on 

human and mouse datasets. Reference-based assembly results using Cufflinks are provided on the mouse dataset. All annotated genes have been 

grouped into quantiles by RPKM expression values of 1,464 (resp. 1,078) genes for the human data (resp. mouse). 
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dynamic range of all the variables, which prevent any single 

method from being systematically superior.  

Finally we examined the difference between de novo and 

reference-assisted assembly. In the presence of a well assembled 

genome (typically human or mouse), the latter methods are 

generally at a significant advantage. Nonetheless, this gap reduces 

at high expression levels. This shows that the absence of an 

assembled genome can be largely compensated for provided 

sufficient read coverage.  

 
Data Method Tfrags 

>100bp 

Sens. 

(%) 

Spec. 

(%) 

Full 

lgth 

80% 

lgth 

human 

Oases-M 174,469 21.44 92.35 1,463 11,169 

tABySS 100,127 19.65 92.16 1,358 10,992 

Trinity 76,232 19.99 88.63 953 7,129 

mouse 

Oases-M 175,914 30.83 89.08 1,324 9,880 

tABySS 174,744 30.66 92.79 1,149 9,376 

Trinity 92,810 31.57 87.14 1,085 7,028 

Cufflinks 63,207 48.13 75.29 4,369 21,222 

Table 2: Overall comparison of the different RNA-seq assembly methods 

on human and mouse datasets. The number of transfrags longer than 

100bp produced (Tfrags), and nucleotide sensitivity and specificity, as 

well as the number of full length or 80% length reconstructed Ensembl 

transcripts are shown. 

 

 
Fig. 4. Venn Diagramm that compares mouse Ensembl transcripts 

reconstructed to full length by Trinity, Trans-AbySS and Oases-M for the 

mouse RNA-seq data. 
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