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ABSTRACT
Motivation: RNA-seq is a powerful technology for the study
of transcriptome profiles that uses deep-sequencing technologies.
Moreover, it may be used for cellular phenotyping and help
establishing the etiology of diseases characterized by abnormal
splicing patterns. In RNA-Seq, the exact nature of splicing events
is buried in the reads that span exon-exon boundaries. The accurate
and efficient mapping of these reads to the reference genome is a
major challenge.
Results: We developed PASSion, a pattern growth algorithm based
pipeline for splice site detection in paired-end RNA-Seq reads.
Comparing the performance of PASSion to three existing RNA-Seq
analysis pipelines, TopHat, MapSplice and HMMSplicer, revealed
that PASSion is competitive with these packages. Moreover, the
performance of PASSion is not affected by read length and coverage.
It performs better than the other three approaches when detecting
junctions in highly abundant transcripts. PASSion has the ability to
detect junctions that do not have known splicing motifs, which cannot
be found by the other tools. Of two public RNA-Seq data sets,
PASSion predicted around 137,000 and 173,000 splicing events, of
which on average 82% are known junctions annotated in the Ensembl
transcript database and 18% are novel. In addition, Our package
can discover differential and shared splicing patterns among multiple
samples.
Availability: The code and utilities can be freely downloaded from
https://trac.nbic.nl/passion and ftp://ftp.sanger.ac.uk/pub/zn1/passion
Contact: y.zhang@lumc.nl; k.ye@lumc.nl
Supplementary information: Supplementary data are available.

1 INTRODUCTION
Global transcriptome analyses provide important insights in the
qualitative and quantitative aspects of gene expression. A few
years ago, transcriptome composition was mainly measured using
microarrays. With the development of next-generation sequencing,
a massively parallel transcriptome sequencing technology called

∗to whom correspondence should be addressed

RNA-Seq has been developed and widely applied in transcriptome
profiling. Compared to microarrays, RNA-Seq measures the
transcriptome without prior knowledge of genome sequence and
enables the detection of previously unknown transcripts. Moreover,
RNA-seq is more sensitive towards changes in low abundant
transcripts, and has a much broader dynamic range (’t Hoen et al.,
2008; van Iterson et al., 2009).

One of the opportunities offered by RNA-seq is the detection
of (novel) splice isoforms. Splicing is a process in which introns
are excised and the flanking exons are joined to form the mature
messenger RNA. In eukaryotes, almost all multi-exonic genes
undergo alternative splicing (Wang et al., 2008; Pan et al., 2008).
Recent studies have revealed that variations in splicing patterns
are associated with Alzheimer’s (Twine et al., 2011) and other
complex diseases (Wang and Cooper, 2007). Detection of splicing
patterns will therefore not only contribute to the characterization of
transcript structures but also help to understand cellular and disease
phenotypes.

Discovery of splice junctions using RNA-Seq is mainly achieved
by aligning the reads that span exon-exon junctions to the reference
genome. Current fast aligners such as Bowtie (Langmead et al.,
2009) and BWA (Li and Durbin, 2009) can efficiently map reads
to the exon region, but are less efficient in the mapping of reads
across splice junctions.

Recently, many dedicated tools for detection of splice junctions
have been developed. ALEXA-seq (Griffith et al., 2010) uses an
exon-exon junction database of all possible pairwise connections of
the known exons from Ensembl to assess the expression, differential
expression and alternative expression of known and predicted
transcript isoforms. The obvious limitation is that ALEXA-seq can
only detect junctions between known exons but is not able to detect
alternative transcripts including yet unknown exons.

Other algorithms do not rely on existing transcript annotations.
TopHat (Trapnell et al., 2009) is one of the pioneers in this
field. It first builds exon islands and connects the potential exons
using the known splicing motifs (GT-AG, GC-AG, AT-AC), and
finally realigns previously unmapped reads to the joined parts.
MapSplice (Wang et al., 2010) first splits reads into smaller
segments and then aligns these to the reference genome individually.
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A potential junction is detected, if a missing segment can be
reconstructed by the extension of neighboring exonic segments. All
the potential junctions are finally evaluated by a score based on
anchor significance and entropy. HMMSplicer (Dimon et al., 2010)
first splits the reads into two fragments and aligns them separately
to the reference genome. Once a fragment is aligned, a Hidden
Markov Model (HMM) is used to detect the most probable splice
position, and finally all junctions are scored, filtered and divided
into canonical and non-canonical junction sets.

However, these methods have limitations. TopHat cannot detect
junctions with novel splicing motifs since it requires the guidance of
known splice sites to join exons. Both MapSplice and HMMSplicer
divide reads into small segments, and therefore potentially work
better for long reads than for short reads. Both studies showed that
they perform well on lowly expressed genes but are less accurate
on highly abundance transcripts (Wang et al., 2010; Dimon et al.,
2010). Moreover, while MapSplice and HMMSplicer are designed
to handle both single-end and paired-end reads, neither of them
exploit the paired information in their algorithms.

Here we introduce PASSion, a pattern growth based splice site
detection pipeline developed only for the analysis of paired-end
RNA-Seq reads. PASSion uses the mapped read in a pair as anchor
and then uses a high resolution algorithm, pattern growth, to remap
the proximal and distal fragments of the unmapped read to a local
region of the reference indicated by the mate. It is capable of
identifying both known and novel canonical and non-canonical
junctions with SNP or sequencing error tolerance.

2 METHODS
PASSion computes the precise breakpoints of splice junctions in
five stages: initial mapping, building exon islands, high resolution
remapping, filtering and detection of canonical and non-canonical
junctions, as shown in Figure 1. In this section, we will first explain
the principle of pattern growth. After that, PASSion’s different
stages are explained. In addition, we will describe how PASSion
detects shared and sample specific junctions between multiple
samples.

2.1 Pattern growth
Pattern growth is an approach that can mine various frequent
patterns from large databases (Pei et al., 2004). Recently, this
algorithm has been implemented for the discovery of protein motif
sequences (Ye et al., 2007) and the detection of break points of large
deletions and medium sized insertions in the genome (Ye et al.,
2009). Inspired by these applications, we apply pattern growth to
the analysis of RNA-Seq data.

Pattern growth can detect the minimum and maximum unique
substrings of a given pattern from a sequence. The inputs are a
pattern and a reference sequence; while the outputs consist of all
unique substrings together with their locations. In theory, the unique
substrings can be searched from either the leftmost or the rightmost
base of the pattern. Here, we briefly demonstrate how to find the
unique substrings starting from the leftmost position of a pattern.
The procedure is also illustrated in Table 1.

Let a reference sequence R be ’ATCAAGTATGCTTAGC’ and
pattern P be ’ATGCTA’. The variable i is the growth index starting
from 1. Θ is the set of locations where SPi, the substring of pattern

Table 1. An example of pattern growth. The inputs are a pattern
’ATGCTA’ and a reference ’ATCAAGTATGCTTAGC’.

i Sub pattern (SPi) Θ Feature

1 A 1, 4, 5, 8, 14
2 AT 2, 9
3 ATG 10 SPmin

4 ATGC 11
5 ATGCT 12 SPmax

6 ATGCTA φ

starting from position 1 to i, appears in R. First, SP1 is ’A’, and
the locations of ’A’ in R, which is (1, 4, 5, 8, 14), are stored in
Θ . In the second loop, the algorithm will search for SP2 ’AT’ in
the reference and update Θ to (2, 9). As the procedure continues,
the minimum unique substring SPmin = SPi when SPi is the first
unique substring. Later on, if SPi is unique and SPi+1 is not, then
SPi is the maximum substring SPmax. In our example, SPmin

= ’ATG’ and SPmax = ’ATGCT’. The pattern growth algorithm is
implemented in high-resolution remapping stage of the pipeline.

2.2 Pipeline
2.2.1 Initial mapping PASSion starts with mapping the RNA-
Seq reads to the reference genome using SMALT (Ponstingl and
Ning, manuscript in preparation, http://www.sanger.ac.uk/resources/
software/smalt/). SMALT is a recently developed, fast aligner
employing a hashing concept similar to SSAHA (Ning et al., 2001).
With default settings, it reports the optimal unique mapping for each
read. The output format is set to samsoft (’-f samsoft’) with which
the full sequence of read is also included in the SAM (Li et al., 2009)
format (so-called ’soft clipping’). By applying SMALT, reads which
have a unique mapping position in the reference (perfect match is
not necessary) are referred to as mapped reads.

2.2.2 Building exon islands All the read alignments detected by
SMALT are piled up to the reference genome using SAMtools
(Li et al., 2009). The regions covered by at least one read are
defined as exon islands, which are the potential search regions.
Restricting read remapping to the exon islands will dramatically
decrease the search area thus increase the speed of our algorithm
and lead to more unique hits. Some of the reads spanning exon-exon
boundaries will be discarded or reported as soft clipping, hence exon
boundary region may not be optimally covered. To account for this,
exon islands are extended with one insert size on both sides. For
PASSion we do not use the option SMALT offers for the detection
of junction boundaries due to sensitivity issues in small exons and
system performance reasons (option ’-p’, Hannes Ponstingl, private
communication). Alternatively, PASSion can also restrict junction
calls to the user-defined regions.

2.2.3 High-resolution remapping Based on the initial mapping,
the paired-end sequences with one mapped and one unmapped reads
are utilized for remapping using pattern growth. We apply a local
search strategy using the mapped end as an anchor and finding all the
unique substrings starting from the leftmost and rightmost position
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Fig. 1. The overview of the PASSion pipeline. Initially, a fast aligner is
applied to align the RNA-Seq reads to the reference genome. The exonic
reads are then piled up to build the exon islands. Pairs with one exonic read
and one unmapped read are then used to identify junctions. For each pair,
the location and direction of the exonic read determines the anchor point on
the reference genome and the direction in which the unmapped read will be
searched for. Knowing the anchor, search direction, exonic region and user
defined maximum insert size, the reads will be remapped to a defined region
in the genome from two terminals (and the middle if necessary). A splice
junction is reported if the unique substrings from both ends can reconstruct
the original split read and has a sufficiently high number of supportive reads.
For splice sites with microhomology, canonical and non-canonical motifs are
used to finalize the break points. For the junction without splicing motifs, the
leftmost breaking point will be reported.

of unmapped reads. Depending on the direction of the anchor, the
search area is either downstream or upstream of the exon region of
the anchor with the distance of the maximum intron size which is
a user-defined parameter. Finally, a junction will be reported when
the combination of substrings from the leftmost and rightmost ends
makes up the original read. In case both reads in a pair are the
mapped reads but the mapping is imperfect, each of them will be
used as an anchor and its mate will be remapped accordingly. Due
to the existence of small (≤100 nucleotides) exons, some reads may
span two splice junctions. These reads should be mapped to the
genome as three fragments. Therefore in this stage, we first detect
junctions by remapping the reads as two fragments. Reads failing to
report junctions will be passed to the second round, in which they
will be divided into three fragments.

Fig. 2. Reconstruct unmapped reads using pattern growth. Using the
mapped read as anchor, pattern growth is applied to find the minimum
and maximum substrings from the close end of unmapped read, denoted
as C min and C max respectively in the figure. If succeed, the location
of the close end is used as anchor, the far end of unmapped read is searched
to find F min and F max in a similar fashion. If the unique substrings of
proximal and distal ends make up the original read, a junction is reported.

Round 1: aligning reads spanning a single junction. Suppose we
have a pair of reads with one read mapped to the reference as
anchor, Ranchor , and one unmapped read, Rum, with its potential
alignment located downstream of the anchor, as illustrated in Figure
2. Read length is r. First we examine whether the close (relative
to the anchor position) fragment of the unmapped read uniquely
exists in the reference or not. The search region comprises exonic
sequences within the maximum intron size downstream from the
anchor. If the minimum substring of the close end is sufficiently
long, the close end is then used as an anchor to search for the far
end in a similar manner. Finally, we join the substrings of both ends
which are Rum[1 : i] (close end) and Rum[r − p+ 1 : r] (far end)
to construct a read R′

um using Equation 1:

R′
um = argk≤i≤jRum[1 : i]+argm≤p≤nRum[r−p+1 : r] (1)

where k, j,m and n represent the length of the minimum and
maximum substring of Rum starting from the proximal and distal
end, respectively; i is the length of a unique substring from the
proximal end which is between k and j; p is the length of a unique
substring from the distal end which is between m and n. A junction
is reported when R′

um = Rum.

Round 2: aligning reads spanning a small exon. When an
unmapped read spans a short exon (as showed as the red reads
in Figure 1), the maximum substring of the close and far ends,
Rum[1 : j] and Rum[r− n+1 : r], cannot reconstruct the original
read. In this circumstance, the middle string will be extracted and
remapped to the genome using pattern growth. The constructed
R′

um is then the combination of maximum close end Rum[1 : j],
middle arge≤q≤f Rum[j + 1 : j + q] and the maximum far end
Rum[r − n+ 1 : r], as shown in Equation 2:

R′
um = Rum[1 : j]+arge≤q≤fRum[j+1 : j+q]+Rum[r−n+1 : r]

(2)
where j and n are the length of the maximum substrings of proximal
and distal ends; e and f represent the length of the minimum and
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maximum substring of the middle fragment in Rum; q is the length
of a middle string which is between e and f . Two junctions will
be reported when R′

um = Rum with one between the proximal end
and middle, the other between the middle and distal end.

2.2.4 Filtering splice junctions Since reads are very short
fragments and the entire genome contains repetitive regions, it is
possible that each step takes false positives into the next steps,
eventually generating spurious splice junctions. In our approach, we
use a read depth-based strategy to filter out spurious splice junctions.

For each junction, the average expression of the flanking exons
is calculated using the read coverage of the donor and acceptor
exons divided by the frequency of their splice site respectively. If
the number of supportive reads for a junction is smaller than 10% of
the average coverage of the more deeply covered flanking exon, the
junction is discarded. The user can adjust this cutoff.

2.2.5 Detection of canonical and non-canonical events We
report junctions with length, breakpoint and breakpoint range due
to the presence of microhomology (Lee-Theilen et al., 2011).
The canonical motif (GT-AG) and two non-canonical motifs (AT-
AC, GC-AG) are applied to finalize the breakpoint within the
microhomology range with priority order of GT-AG, AT-AC and
GC-AG in the forward strand and their reverse complement motifs
CT-AC, GT-AT and CT-GC in the reverse strand. For those without
motifs, the leftmost breakpoints are used as the final location. The
strand of the splicing motifs is used to decide the strand of the
junctions.

2.3 Detection of differential and shared splicing
patterns

In the package, we provide an additional module to identify
the shared and sample specific splice junctions between multiple
samples. First, it retrieves all raw junctions (before filtering) and
exon coverage from each sample. Then each junction is labeled by
a tag indicating in which sample it occurs. After this, junctions
are merged and exon coverage are stacked. At the end, the final
junctions are reported by applying the filtering scheme to the
combined data. As we add a tag to each individual junction, we
are able to report per junction how many reads from each sample
support it. By merging the raw junctions and then setting the cutoff
according to the overall exon coverage, we are aiming to improve
sensitivity for shared junctions and to increase specificity for the
sample specific junctions.

2.4 Simulated data
We used human chromosome 17 as the reference and extracted
4837 transcripts longer than 350 bp resulting in 14654 known
splice junctions from Ensembl database. To test the read length
effect, short, medium and long libraries were constructed in silico
with read lengths and insert sizes of (50 bp, 200 bp), (75 bp,
300 bp) and (100 bp, 500 bp) respectively. Insert size is the
length of the two reads together with the non-sequenced part.
As gene expression levels in the cell display a broad dynamic
range, reads are simulated at different coverage. For each transcript,
the reads are simulated at an average coverage of 0.1x, 1x, 5x,
10x, 20x, 30x, 40x, 50x, 60x, 80x and 100x resulting in the
overall coding region coverage ranging from 0.2x to 200x.

The simulated data are generated using wgsim from SOAPSplice
package (http://soap.genomics.org.cn/soapsplice.html) with base
error rate and mutation rate of 0.02 and 0.001.

2.5 Real RNA-Seq data
Two RNA-Seq datasets (Accession SRR065497 and SRR065533),
which were parts of the ENCyclopedia Of DNA Elements
(ENCODE) project, were obtained from EMBL-EBI Sequence
Read Archive. SRR065497 is the RNA-Seq data from HepG2 liver
carcinoma cells; while SRR065533 is from human embryonic stem
cells. Both sets are generated by Illumina Genome Analyzer II
paired-end sequencing with read lengths of 75 bp and insert sizes
of 200 bp, resulting in 17.2M and 17.7M pairs of reads respectively.

3 RESULTS
3.1 Implementation
PASSion is an RNA-Seq analysis package. The pipeline is written
in shell scripts. The key component that utilizes pattern growth
to detect the precise splice junction site is implemented in C++
with parallelization. The other elements are implemented in Perl.
Currently, it runs on Linux system and requires gcc≥4.3, SMALT,
and SAMtools to be pre-installed.

3.2 Performance on simulated data
PASSion and three other splice junction detection approaches,
TopHat (v1.3.1), MapSplice (v1.15.2) and HMMSplicer (v0.9.5),
were first evaluated on the simulated data sets. The minimum and
maximum intron sizes were set to 20 bp and 409600 bp for all
approaches. In this range, ∼99% of splice junctions in human
are covered (see Supplementary Figure 1(b)). For the optional
parameters, the default values were used. The performance of the
four methods on the short, medium and long libraries is displayed
in Figure 3. The sensitivity (true positive rate) and specificity (1-
false positive rate) are shown in subfigure (a, b, c) and (d, e,
f). Since HMMSplicer separates the predictions into canonical
and non-canonical sets, we use HMMSplicer1 to indicate the
canonical predictions and HMMSplicer2 to indicate the result of
both canonical and non-canonical junctions.

In general, the sensitivity curves of all the approaches display
similar trends, and the main difference is the increasing speed with
read coverage. Each of the four methods can detect almost all the
true junctions when coverage is higher than 100x fold. In detail,
TopHat is less sensitive to the short read library compared to other
approaches (Figure 3(a)). MapSplice detects the lowest number of
junctions when applied to libraries with long reads (Figure 3(c)). In
all the data sets, the true positive rate of PASSion has the quickest
growth rate along with the read coverage and it is the most sensitive
method overall. As for HMMSplicer, the sensitivity curves did not
differ very much among three libraries but they are slightly lower
than those of PASSion.

Upon further inspection of Figure 3 (a, b, c), we noticed that at
the highest read coverage in each library, the average sensitivities
of all approaches reach 94.5%, 94.6% and 91.1% respectively. The
decrease in sensitivity for 100 bp library may be due to the existence
of small exons. In human, about 25% of exons are shorter than 100
bp (see Supplementary Figure 1(a)). Therefore, special attention
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Sensitivity and specificity of PASSion, TopHat, HMMSplicer and MapSplice on simulated data. Since HMMSplicer provides two sets of results, we
refer to HMMSplicer1 as the results where only canonical junctions are included, while HMMSplicer2 contains both canonical and non-canonical junctions.
The performance tested in short, median and long libraries are shown in (a,d), (b,e) and (c,f). For each library, a different read depth is simulated, ranging from
an average coverage (x-axis) of 0.2x to 200x.

should be paid to the multiple-junction spanning reads when read
length around or longer than 100 bp.

The prediction accuracy is clearly different for the four algorithms
as shown in Figure 3 (d, e, f). In general, the specificity of
TopHat, MapSplice and HMMSplicer drops with the read coverage,
where PASSions specificity remains high with specificities greater
than 97%. And the high specificity of PASSion is not affected by
either read length or coverage. The specificity of HMMSplicer2

(canonical and non-canonical junction sets) is much worse than
HMMSplicer1 (canonical junction set). This indicates that the non-
canonical junction set contains a high number of false positive
predictions. The accuracy of TopHat is not affected by read length.
As for MapSplice and HMMSplicer1, their specificities decrease
with the increase of coverage; this phenomenon is more dramatical
in the 50 bp library (Figure 3(d)) than that in 100 bp library (Figure
3(f)), indicating that MapSplice and HMMSplicer are more suitable
for long reads.

3.3 Prediction of splice junctions for real data
We apply PASSion, TopHat, HMMSplicer and MapSplice to predict
junctions for the real data using the same parameter settings as in the
simulated data. For convenience, data SRR065497 and SRR065533
are represented by S1 and S2. The results are shown in Table
2. In the predictions, the splice junctions annotated in Ensembl
database are labeled as Known. Since RNA-Seq has the ability
to detect the novel junctions, the unconfirmed junctions can be
novel. We use Unknown.2exons representing the junctions which
are not recorded in the database but of which both the donor and
acceptor sites are at the known exon boundaries retrieved from
Ensembl; Unknown.1exon represents the unknown junctions with
either the donor or acceptor sites locates at a known exon boundary;
Unknown.0exon are the those which link between two novel exon
boundaries. Confirmed ratio is the fraction of the annotated splicing
to total number of predictions. Since we noticed that there are
too much false junctions in the non-canonical set predicted by
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Table 2. Predicted splice junctions using PASSion, TopHat, MapSplice and HMMSplicer on two real data sets, SRR065497 and SRR065533 which are
represented by S1 and S2. From this table, we can observe that PASSion displays a good performance with both a high number of predictions and high
confirmed ratios.

PASSion TopHat MapSplice HMMSplicer1

S1 S2 S1 S2 S1 S2 S1 S2

Prediction 136664 172568 134226 165656 160058 211641 131793 172293
Known 114884 138594 111681 134067 118720 142306 110961 136313
Confirmed ratio 84.1% 80.3% 83.2% 80.9% 74.2% 67.2% 84.2% 79.1%
Unknown.2exons 3760 5975 4318 6323 4922 7757 3724 6503
Unknown.1exon 10679 16088 10749 15811 14599 22318 11733 19149
Unknown.0exon 7341 11911 7478 9455 21817 39260 5375 10328

Known represents the splice junctions annotated in Ensembl database; Unknown.2exons, Unknown.1exon and Unknown.0exon represent the junctions which are not recorded in the
database but of which the splice sites are at 2, 1, 0 known exon boundaries respectively. Confirmed ratio is the fraction of the annotated junctions and the total number of detected
junctions; HMMSplicer1 refers to the canonical junctions predicted by HMMSplicer.

(a) Known (b) Unknown.2exons (c) Unknown.1exon (d) Unknown.0exon

Fig. 4. Venn diagram showing the overlaps in detected splice junctions between PASSion, TopHat, HMMSplicer and MapSplice for sample S1. The overlaps
in different category of the predictions are displayed in the subfigures.

Table 3. The detected known splice junctions categorized by splice site motifs. CT-AC, CT-GC and GT-AT are the reverse complement motifs of GT-AG,
GC-AG and AT-AC respectively.

Known Total GT-AG CT-AC GC-AG CT-GC AT-AC GT-AT Unknown motifs

PASSion All 114884 57501 56236 449 493 55 72 78
Unique 2157 1018 982 28 35 5 11 78

TopHat All 111681 55623 55045 424 469 55 65 0
Unique 1282 578 672 9 14 5 4 0

MapSplice All 118720 60032 58688 0 0 0 0 0
Unique 2583 1305 1278 0 0 0 0 0

HMMSplicer1 All 110961 55660 54394 434 473 0 0 0
Unique 744 358 364 9 13 0 0 0

HMMSplicer, only the canonical set, HMMSplicer1, is used to
compare with the other results.

Real data is more complicated than the simulated data due to the
uneven read coverage induced by the broad dynamic range of gene
expression levels. As shown in Table 2, PASSion predicted 136664
and 172568 splicing events for the two data sets, of which 84.1%
and 80.3% are known junctions annotated in Ensembl database.
In general, PASSion displays a balanced performance with both a
high number of predictions and high confirmed ratios. Compared

to PASSion, TopHat predicted a similarly high percentage of
confirmed splice junctions but it predicted slightly less events.
HMMSplicer has a similar performance as TopHat, but only when
the non-canonical junctions are not included. As for MapSplice,
although it gave the highest number of predictions, the fractions
of known exon junctions in the prediction, which are 74.2% and
67.2%, are lower than other algorithms, indicating that there are
more false positive splice junctions detected.
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(a) (b)

Fig. 5. PASSion predicted the shared and sample specific exon-exon junctions for the real RNA-Seq samples S1 and S2. (a) Venn diagram, (b) Junctions
located at chr17: 48600000-48770000 visualized by UCSC browser in which PASSion track is on the top of the UCSC gene track. The unique junctions in S1
and S2 are depicted in red and green respectively; The splice events occur commonly in S1 and S2 are showed in black.

We further created Venn diagrams showing the overlaps and
difference among the four methods for sample S1 (Figure 4). In
the group of Known predictions, showed in Figure 4(a), we found
that the majority of junctions, that is 97887, are detected by all
four methods; 2157, 744, 2583 and 1282 junctions are PASSion,
HMMSplicer, MapSplice and TopHat specific. We then categorized
these known junctions by splicing motifs. As can be seen in Table 3,
while the other methods cannot find junctions with unknown motifs,
PASSion detects 78 in this category (One example is shown in the
Supplementary Figure 4).

Moreover, we found that the proportion of the commonly
detected junctions to the ones detected by just a single
method in the Known group is 82%-88%. For junctions in the
Unknown.2exons, Unknown.1exon and Unknown.0exon groups, this
overlap is considerably lower at 38%-45%, 28%-39% and 7%-29%
respectively demonstrating that the confidence decreases with less
database information support. Again, MapSplice predicts 21817
junctions in the lowest confidence group, in which 17402 are
MapSplice specific, indicative of a high number of false positives.

The CPU running time and memory usage of four methods
are listed in the Supplementary Table 1. When we run PASSion,
TopHat, MapSplice and HMMSplicer on two sets of real data, all
the jobs are submitted to the farm cluster of Welcome Trust Sanger
Institute. As can be seen in the table, Mapsplice is the fastest;
TopHat uses the least memory. Whereas, PASSion consumes the
most memory and HMMSplicer is the slowest.

3.4 Detection of shared and sample specific junctions
To assess PASSion’s ability to report junctions from different
samples, we applied the multi-sample module to predict the shared
and sample specific exon-exon junctions for the real RNA-Seq data
S1 and S2. As shown in Figure 5(a), we detected 109130 exon-
exon junctions supported by the reads from both samples. Each
junction has 22 reads for support in median; 28927 splice events
only appeared in S1 and 63889 junctions exclusively occur in S2. As
for the sample specific junctions, the median number of supportive
reads is 1 and 2 for S1 and S2 respectively. This gives an indication
that many genes are lowly expressed. The coverage of the junctions
unique to one of the two cell lines and those shared are plotted in
Supplementary Figure 2.

Different categories are recorded with different colors in the
final BED file. Figure 5(b) illustrated the junctions located
at chr17:48600000-48770000 visualized by the UCSC genome
browser. As can be seen, almost all the splice junctions existing
in gene ABCC3 are from sample S1 (depicted in red) indicating
that gene ABCC3 is only expressed in HepG2 liver carcinoma cells;
while at upper stream of gene ABCC3, all the exon-exon junctions
of gene CACNA1G are sample S2 specific showing this gene is
exclusively expressed in the human embryonic stem cells. We also
found that gene SPATA20 is expressed in both samples since the
majority of the splicing events occurred both in S1 and S2 (showed
in black). However, there also exist three S1 specific (red) and two
S2 specific (green) junctions, indicating that each sample may have
different transcript isoforms of gene SPATA20.

4 DISCUSSION
We have presented PASSion, a package which is capable of
capturing both annotated and novel splice junctions with high
accuracy. Instead of using the popular data structures applied in
next-generation sequencing analysis, e.g. suffixarray and hash table,
the key component of PASSion is based on pattern growth which
has not been applied in RNA-Seq analysis before. In addition,
PASSion currently can facilitate the discovery of differential and
shared splicing patterns from multiple samples.

One unique advantage distinguishing PASSion from TopHat,
MapSplice and HMMSplicer is that PASSion can detect the splice
junctions with unknown motifs, which are missed by the other tools.
In PASSion, splicing motifs are not used in the main stages of
junction detection, which are building exon islands, high-resolution
remapping and filtering. Only in the last step of the pipeline,
canonical and non-canonical motifs are applied to finalize the
breakpoint within the microhomology range. For those without
motifs, they will be also reported with the leftmost breakpoint as
the final location.

Another advantage is that PASSion is very accurate for highly
abundant transcripts. It is shown that in sample S1, a small fragment
of genes, ∼3%, are highly expressed with read coverage more than
100x (see Supplementary Figure 3). In the case of pooling RNA-
Seq data sets, more transcripts will be highly covered. Currently,
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many algorithms can accurately analyze low abundance transcripts,
but are less efficient for detecting junctions in highly expressed
genes. However, PASSion has a high true positive rate for both
low and high abundance transcripts. First, the application of a local
search strategy helped to rule out potential false locations. Secondly,
we used pattern growth, a high resolution algorithm which can be
accurate to a single nucleotide level. Together with the aid of splice
site motifs, PASSion is able to predict precise breakpoints of exon-
exon junctions without any nucleotide shift. The third and most
important factor is the read depth dependent cutoff filtering. By
default, PASSion reports junctions where the depth of supportive
reads is more than 10% of the average coverage of the more
highly expressed flanking exon. It seems quite simple but effective.
This filtering scheme is similar to the minimum minor isoform
frequency parameter in TopHat, in which junctions are reported if
the abundance of the supportive reads is at least 15% of the depth
of more deeply covered exons. MapSplice and HMMSplicer use
very complicated scores to remove the spurious junctions but are
less effective for highly abundant transcripts.

As for the memory usage, PASSion consumes about 9 GB
memory for 17.2M pairs of 75 bp long reads with the default
settings. The memory usage can be improved by setting a smaller
bin size parameter, since reads are processed per bin. Theoretically,
reducing the bin size will increase the frequency of file reading and
writing, but it will not significantly increase the CPU processing
time. Currently PASSion is the third fastest method according to the
CPU processing time. The wall time can be decreased by setting
up to 8 parallel threads at initial mapping and high resolution
remapping which are the most time-consuming steps. Moreover,
with computer resources becoming cheaper and cheaper and more
computer clouds and clusters becoming available, memory and CPU
running time will not be the bottleneck for computing. Accuracy
should be the more important concern in data analysis.

Nevertheless, we still missed some rare splicings mediating cross
chromosome gene fusion, because we assume that both reads in a
pair are mapped to the same chromosome. It will be one of the
tasks to tackle in the near future. Besides, we are also interested
in detecting allele specific expression and RNA editing events.
Quantification of these post-transcriptional modifications will
contribute to study imprinting, regulation of differential expression
and differential stability of genes or transcripts. Eventually such
detailed analysis will increase our understanding of cell and disease
phenotypes.

Currently more and more labs prefer to sequence RNA using
the paired-end protocol due to the obvious advantages provided
by paired-end reads over single-end reads. PASSion’s ability to
take advantage of paired-end reads together with its overall high
performance will make PASSion a valuable tool for RNA-Seq data
analysis in the future.
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