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Abstract 13 

Long-range reads grant insight into additional genetic information, from the original 14 

DNA samples, far beyond what can be accessed by short reads, or even modern long-15 

read technology.  Several new sequencing technologies have become available for 16 

long-range “linked reads” with high-throughput and high-resolution genome analysis. 17 

These long-range technologies are rapidly advancing the fields of genome assembly, 18 

genome scaffolding, and allowing more comprehensive variant identification. In this 19 

article, we focus on four major long-range sequencing technologies: Hi-C, 10x 20 

Genomics Linked-Reads, Haplotagging and TELL-Seq. We detail the mechanisms 21 

and data products of these four platforms, introduce their most important applications, 22 

evaluate the quality of sequencing data from different platforms, and discuss the 23 

currently available bioinformatics tools. We hope this work will benefit the selection 24 

of appropriate long-range technology for specific biological studies. 25 
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Introduction 30 

Next-Generation Sequencing (NGS) technologies have revolutionized the field of 31 

genomics and genetics, providing low-cost and high-throughput data at an 32 

unprecedented scale. However, most NGS technologies make an underlying 33 

assumption that all relevant genetic information can be reconstructed from the smaller 34 

fragments that make up both short (100-250bp) and long (>10,000bp) reads. Such 35 

reads are ‘short range’ or ‘local’, because they contain only information about the 36 

genetic sequences of the reads, in contrast to ‘long-range’, ‘non-local’ or ‘linked’ 37 

reads, which retain additional contextual information regarding the origin of the read 38 

within the complex, 3-dimensional physical structure of the DNA within and between 39 

chromosomes. 40 

We emphasise that, despite the similar terminology, long-range reads are 41 

conceptually distinct from long reads. Although the size of long reads provides a large 42 

quantity of information, it is inherently local, relating only to the sequence without 43 

containing additional information about the origin of the fragment. In contrast, long-44 

range reads provide additional non-local information, and can take the forms of both 45 

short and long reads, though in practice most long-range technologies currently use 46 

short reads. To avoid confusion, we suggest deviating from the literature standard and 47 

instead defining ‘long-range’ reads as either non-local reads, or linked reads.  48 

Without the additional context of non-local information, for example, it remains 49 

challenging to reliably identify structural variation (SV) with short reads. Although 50 

short reads can identify SVs to base-pair resolution, utilizing only short-range 51 

information suffers from a higher false discovery rate than long reads [1]. It is also 52 

difficult to phase many millions of short reads to a haplotype-resolved genome, 53 

particularly for highly repetitive sequences, complex heterozygosity, and large 54 

polyploid genomes [2, 3].  55 

Local long reads can sidestep many of the issues associated with local short reads 56 

although they contain only local information,  because the large size of the reads 57 

makes it much easier to uniquely localize them within the genome [4, 5] [6,7]. 58 

Currently, two major long-read technologies: Pacific Biosciences (PacBio) single-59 

molecule real-time (SMRT) sequencing and Oxford Nanopore Technologies (ONT) 60 

nanopore sequencing are used for long-read genome analysis [4]. However, these 61 



long-read methods have two drawbacks: (i) higher costs and lower throughput and (ii) 62 

higher DNA input requirements compared to short-read sequencing.  63 

Whilst long-range information can be used in isoltation for de novo assembly, 64 

long-range reads have already proven vastly more powerful since the large, 65 

contiguous reads make referenceless assembly much easier. However, the throughput 66 

and cost issues associated with long reads mean that using them as the sole means of 67 

long-range information in the de novo assembly of tens of thousands of genomes will 68 

likely be prohibitive. This is especially true if chromosome-level assemblies are 69 

desired, since long reads are still much smaller than chromosomes and hence do not 70 

carry chromosome-scale context. Therefore, a cheaper method for inferring long-71 

range information is needed.   72 

Several mechanisms for storing long-range information within short reads and 73 

hence the necessary context to reconstruct a single long molecule of DNA have been 74 

developed, including the “Pair-Linked Reads” (PLR)  chromosome conformation 75 

capture-based Hi-C and “Chain-Linked Reads” (CLR) technologies [8]. 10x 76 

Genomics provides perhaps the best known chained read strategy, which can generate 77 

long-range information from standard approaches based on short reads [9]. In recent 78 

years, 10x Genomics Chain-Linked Read technology has been widely used, but a 79 

variety of other barcode-based methods such as TruSeq, BGI’s Long Fragment Reads, 80 

TELL-Seq, LoopSeq and haplotagging have been developed with ultralow DNA 81 

input, high per-base resolution, and low costs [10, 11, 12, 13]. 82 

Here, we focus on the four major long-range reads sequencing technologies, i.e.,  83 

Hi-C, 10x Genomics Linked-Reads, haplotagging and TELL-Seq. Firstly, we detail 84 

the protocols and mechanisms of the four platforms’ function. Secondly, we propose 85 

some criteria to evaluate the quality of sequencing data on different platforms, and 86 

apply these criteria to discuss the characteristics of datasets either downloaded from 87 

public resources or generated by us. Thirdly, we review the practical applications of 88 

these technologies in efforts such as genome scaffolding, de novo assemblies and 89 

variation screens. Finally, we provide a list of software tools which are commonly 90 

used for genome analysis with long-range reads and discuss their strengths and 91 

weaknesses.  92 



Platforms 93 

In this section, we briefly detail the four platforms of interest: Hi-C, 10x, Haplotgging 94 

and TELL-Seq, focusing on the protocols used to generate the long-range data, and 95 

how such long-range information is manifested in the data products. Across these four 96 

platforms, long-range, non-local information is stored in ‘linked reads’ in one of two 97 

ways: either in Pair-Linked Reads, in which two reads are coupled together to indicate 98 

a relationship between them, or Chain-Linked Reads, in which reads are tagged or 99 

labelled in some ways to indicate their origins. This qualitatively changes the non-100 

local information provided by the platform, and hence informs which platform is 101 

suitable for a given application. 102 

Hi-C 103 

Hi-C is a Pair-Linked Read technology, and the culmination of several generations of 104 

Chromosome Conformation Capture technologies, which uses PLR to probe 105 

chromosome conformation – the spatial organization of chromatin within a cell – at a 106 

genome-wide scale [14], granting access to 3D proximity information within the 107 

nucleus. Since chromatin is a complex 3-dimensional structure, this information 108 

allows researchers to detect long-range interactions between segments within a 109 

chromosome or between different chromosomes. Since homologous chromosomes 110 

each tend to occupy distinct territories in nuclei [15], this feature enables the use of 111 

Hi-C data to improve de novo assembly, and phase heterozygous genome variants 112 

onto haplotypes,  113 

Hi-C technology follows this protocol (see graphical summary in Fig.1A): 114 

 115 

 The nuclear chromatin is crosslinked using formaldehyde. By design, these 116 

crosslinks occur preferentially between strands that are close together in 3D space. 117 

 Crosslinked chromatin is solubilized and fragmented with a restriction enzyme 118 

 The crosslinked segment ends are repaired by filling in with biotin-labeled 119 

nucleotides. 120 

 DNA ligase is used to cyclize the blunt-end components, the proteins that bind the 121 

DNA fragments are degraded, and then the circular crosslinked fragments are 122 



randomly broken again using sonication or other methods. 123 

 DNA is purified and sheared. The biotin-labeled DNAs are captured with 124 

streptavidin-conjugated beads and amplified before sequencing. 125 

 126 

The final result of this protocol is a large number of “deliberate chimeric”, paired 127 

short reads, with each end of the read originating from one of the crosslinked strands, 128 

which are potentially very far away from each other in the linear genome – and even 129 

on different chromosomes entirely. The generated paired reads are then mapped to a 130 

contig assembly of the genome and used to create a high-resolution interaction map 131 

within and between chromosomes: regions where larger numbers reads are found to 132 

have been crosslinked are then inferred to be regions of close contact between the 133 

DNA strands. 134 

10x Genomics linked-reads  135 

10x Genomics Linked-Reads (henceforth simply ‘10x’) are a product formerly 136 

provided by 10x Genomics. In 10x sequencing, long-range information is retained by 137 

combining 3’ barcoding with standard short-read sequencing [16], producing short 138 

Chain-Linked Reads with a ‘memory’ of the larger scale locality where they were 139 

derived from, and hence making it easier to assemble the resulting dataset. The 140 

resulting reads can improve the quality of genome assembly by expanding the range 141 

of linking information along the chromosome to define haplotypes. The 10x protocol  142 

(demonstrated in Fig.1B) is as follows: 143 

 First, high molecular weight (HMW) DNA is prepared and sheared into long DNA 144 

fragments (ideally > 100kb) 145 

 At two microfluidic junctions, tHMW-DNA is then combined with an oil-surfactant 146 

solution, enzymes and gel beads loaded with random primers and barcode 147 

sequences to produce “Gel Beads in Emulsion” (GEMs). Each GEM captures 148 

around 10 HMW-DNA fragments. 149 

 The GEMs are then isolated in partitions and the beads dissolved, releasing the 150 

barcodes and primers uniquely to the HMW-DNA fragments in that partition.  151 

 Each partition is then sheared, extended with both the barcodes and the primers, 152 

and then amplified and sequenced – in this case, by Illumina paired-end sequencing. 153 



The end result of this process is a number of short reads preappended by a unique 154 

barcode identifying the GEM bead they originated from: all reads sharing a common 155 

barcode are called ‘Linked-Reads’ (which we distinguish as being distinct from the 156 

general term linked reads: under our terminology these are Chain-Linked Reads, a 157 

specific form of linked reads). The key statistic is that, since each GEM captures so 158 

few HMW-DNA fragments, the odds that a second fragment which shares the same 159 

barcode also originates from nearby in the genome is very small (see Supplementary 160 

Figure 2), and so the barcode acts to (nearly) uniquely group sets of reads together as 161 

being spatially co-located. This, for example, makes it much easier to phase short 162 

reads as the entire barcoded molecule must be simultaneously phased. 163 

Although 10x sequencing can reconstruct multi-megabase phase blocks by 164 

assembling short reads with barcode information, it still has some drawbacks, such as 165 

relatively high costs in library preparation, and that the 10x platform performs 166 

counterintuitively when faced with smaller genomes, showing a marked performance 167 

degredation. This is because the partitions get saturated by the smaller genome size, 168 

and the statistics begin to favour ‘barcode collisions’ much more frequently. The 10x 169 

platform is optimized for the human genome size, and modifications such as smaller 170 

DNA samples would need to be made for non-human cases.  171 

Most significantly, however, this product was been withdrawn and discontinued 172 

in 2020 [17]. However, we include this platform in our analysis for continuity with 173 

previous benchmarking and comparison efforts, and since future 10x Genomics 174 

products may be comparable to this previous iteration. 175 

 176 

Haplotagging 177 

Several other technologies have been developed to provide an alternative form of 178 

CLR in the absence of 10x. Haplotagging, as a simple and relatively low-cost Chain-179 

Linked Read sequencing technique was developed by Meier et al. [13]. This technique  180 

allows high-throughput sequencing without losing haplotype information while 181 

maintaining the power, accuracy, and scalability of standard Illumina sequencing.  182 

Haplotagging, like TELL-Seq mentioned below,  is a transposon bead-based 183 

technology that employs transposomes containing bead-specific barcoded adaptors. 184 

These technologies utilise the tendency of segments of HMW-DNA to wrap around 185 



microbeads, providing many points of contact between the bead and the DNA. The 186 

full protocol is as follows (Fig.1C): 187 

 As in the 10x protocol, HMW-gDNA (ideally >100kb) is prepared. 188 

 The HMW-gDNA is mixed with the barcoded beads. Each bead carries a standard 189 

Illumina Nextera Tn5 transposon adaptor, augmented with one of 85 million 190 

barcodes, and each bead captures only a single DNA fragment 191 

 Transposition transfers the barcoded adaptors into the long DNA fragments, before 192 

PCR amplification to generate a sequencing-ready library. 193 

  Finally, the libraries were sequenced using an Illumina platform. 194 

 195 

The result is that the initial HMW-DNA fragments are broken into smaller units, each 196 

containing a unique barcode, that can be sequenced on short read sequencers. 197 

Subsequently, all the reads originating from the same HMW-DNA fragment can 198 

grouped by their barcode, and hence correctly mapped to the same fragment.  199 

The key difference between haplotagging technology and 10x is that DNA molecules 200 

tend to interact only with a single bead, instead of the approximately 10 (for humans) 201 

fragments-per-bead that 10x relied on. In addition, each bead is tagged with four 202 

barcode fragments that are distributed in the standard i5/7 index positions of the 203 

Illumina Nextera adaptor design. Thus, library preparation and barcoding are 204 

performed simultenously within the same tube, making the process cheap and easy to 205 

produce using standard molecular biology equipment. The data output is very similar 206 

to that of the 10x platform: a series of short reads preappended by a barcode, 207 

indicating which reads originated from a similar vicinity. However, as mentioned 208 

above, the process is much cheaper (the original work claimed a 99% cost reduction); 209 

and since the fragment/bead interaction is close to 1:1, instead of approximately 10:1, 210 

each fragment is genuinely uniquely barcoded, resulting in fewer barcode collisions, 211 

as demonstrated in Supplementary Figure 2. In addition, the 4-fragment nature of the 212 

barcode is designed to allow for error-correction in the barcode reads, allowing for 213 

more robust identification of the barcode. However, the fragments are prone to 214 

display PCR duplication errors [18] and the product is not yet at the stage of 215 

commercial deployment. 216 



TELL-Seq 217 

TELL-Seq1 is another CLR sequencing technology which functions very similarly to 218 

the Haplotagging platform but is currently commercially available through Sage 219 

Science. The TELL-seq technology workflow is as follows (Fig.1D): 220 

 Genomic DNA (0.1-5ng), the barcoded TELL beads (3-10 million) and 221 

transpososomes are mixed in a PCR tube. 222 

 The transpososomes and DNA segments interact to form a strand transfer 223 

complexes (STCs), which is connected with the barcode sequence on the TELL 224 

bead surface.  225 

 The transposase is removed, the DNA fragment is cut into two parts in the STC, 226 

and the beads removed, leaving a DNA fragment, connected to a transposon, which 227 

is in turn connected to a barcode. 228 

 The barcoded DNA molecules are amplified with P5 and P7 adaptors before 229 

illumina sequencing.  230 

The library preparation for TELL-Seq differs from haplotagging in mostly minor 231 

ways, with the primary distinction being in the form that the barcode takes: TELL-Seq 232 

uses a simpler 18-base barcode, rather than the 4x6 method of Haplotagging. This 233 

allows for a larger number of unique barcodes – and hence reduced likelihood of a 234 

collision - but lacks the error-correction feature. 235 

Data features and quality assessment 236 

Before we discuss data applications, we first introduce metrics on quality assessment 237 

and then use the metrics to evaluate datasets sequenced for this study. Our focus will 238 

be on Hi-C, 10x and Haplotagging, which are currently or previously available in the 239 

market. 240 

                                                 
1 We note that the acronym TELL-Seq (Transposase Enzyme Linked Long-Read Sequencing) falls afoul 

of the terminology confusion referenced earlier. Under the terminology we have enforced, the linked 

reads produced are long range, but they are not long reads.  



Data Metrics 241 

In order to provide a robust analysis of the relative performance of the platforms, we 242 

must first derive numerical metrics by which to judge them. Since the Pair-Linked 243 

Platforms platforms differ significantly in the mode of operation from the Chain-244 

Linked Reads, the metrics used will be slightly different, but our design aims to 245 

enable as valid a comparison as possible.  246 

 247 

Metric 1: Association 248 

Association is the ability for long range information to be communicated by the 249 

platform, or equivalently, the amount of non-local information contained within a 250 

read. Datasets with a higher association contain more and longer-range information 251 

than those with a lower association. In the context of trying to use long-range 252 

information as an assembly tool, a stronger association is preferable.  253 

For the PLR platforms, association is measured by the distribution of Link-254 

Separation Distance, the distance on the linear genome between the two ends of 255 

paired reads which have been linked together. If the first end of the pair aligns to a 256 

location 𝑖, and the second end to 𝑗, then the genomic distance is |𝑖 − 𝑗|. If large values 257 

of |𝑖 − 𝑗| are found to occur more often, then the dataset has a stronger association. 258 

Whilst we should therefore favour platforms which have a higher proportion of reads 259 

with large |𝑖 − 𝑗|, we note also that there is an expected pattern at higher distances: if 260 

the linkage probability is inversely proportional to some power (𝑏) of the physical 261 

distance between the reads, and at large linear distances genomic distance and 262 

physical distance are approximately the same, then we expect the frequency to fall as  263 

𝑝(link 𝑖, 𝑗) ∝
1

|𝑖 − 𝑗|𝑏
      →    𝑓(|𝑖 − 𝑗|) ≈ 𝐴|𝑖 − 𝑗|−𝑏 264 

Where 𝐴 is an arbitrary scaling parameter. On a log-log scale, this manifests as a 265 

linear relationship between the separation distance, and the observed frequency. 266 



Deviations from this pattern indicate problems with the library preparation and can 267 

result in the failure of any statistical inference based on the dataset. We should 268 

therefore prefer datasets which i) exhibit a power-law relationship in frequency at 269 

high separation distances and ii) Have a smaller exponent, resulting in a longer tail, 270 

and hence more long-range information. 271 

In the case of the Chain-Linked Read platforms, the long-range information is 272 

conveyed by labelling reads as originating from a larger molecule via a tag shared by 273 

all fragments of that molecule. The association should therefore be measured by the 274 

size of the molecules from which the labelled reads are drawn.  275 

It is clear that having a larger molecule is generally better: each barcode 276 

delinieates a larger spatial region, so the information is longer-range. There is, 277 

however, an upper limit at which point increasing the molecule size gives decreasing 278 

returns: for example, if the molecules were chromosome scale, then the barcoding 279 

would simply inform us which chromosome the read is from: useful, but not 280 

beneficial for assembling the reads within a given chromosome. Of critical concern, 281 

however, is that increasing the molecule size increases the chances of barcode 282 

collisions, behaviour demonstrated in Supplementary Figure 2. Generally, the size at 283 

which collision rates become untenable is significantly below the genome size, and 284 

hence should be treated as the limiting factor on the molecule size. We should 285 

therefore favour platforms which generate larger molecule lengths, but which still 286 

have a small collision rate. 287 

 288 

Metric 2: Accessibility 289 

Accessibility is the fraction of the data which is unique, unambiguous and useable. 290 

Datasets which have a low accessibility may still contain useful scientific data, but 291 

much more data would be required to achieve the same level of significance. We 292 

should therefore prefer platforms which produce highly accessible data. For example, 293 



both CLR and PLR suffer from potential PCR duplication – the overamplification of 294 

some portions of the genome through the library preparation process. A high PCR 295 

duplication rate is indicative of a poor accessibility, and vice versa. Complex factors 296 

underlying the library preparation can also lead to reads which cannot be mapped to 297 

the reference genome (and the rate of unmapped reads is noteably higher in Long 298 

Range platforms than normal Illumina short reads), or which contain no linking 299 

information (‘singletons’). Such ‘unmapped’ reads contain no useful information, and 300 

so they too should be excluded from further analysis. 301 

 In addition, PLR explicitly allows inter-chromosomal interactions to be mapped. 302 

Whilst this is useful in general in 3D genomics, for the purposes of the applications 303 

discussed in section 0 this represents unusable data, as assembly should occur on a 304 

per-chromosome basis. In order to have the maximum amount of usable information, 305 

we should therefore prefer the platforms which have a smaller number of linkages 306 

between chromosomes: a smaller translocation rate.  307 

 Assuming that other sources are negligible (or, equal between platforms), the 308 

total accessibility of the dataset can therefore be computed from the PCR duplication 309 

rate 𝐷, the translocation rate 𝑇 and the unmapped rate, 𝑈: 310 

𝐴 = 1 − 𝐷 − 𝑇 − 𝑈 311 

A higher value of 𝐴 indicates a dataset which contains more useful information. 312 

Metric 3: Evenness 313 

Evenness is the measure of statistical validity in the coverage of the genome. A high 314 

coverage is evidently preferred, as it means that more of the genome was sampled and 315 

there is a smaller chance of missing portions of the genome, however, it is also 316 

important to ensure that the coverage was not biased onto some portions of the 317 

genome over others: there should be an equal likelihood of a read being generated 318 

anywhere on the genome. Datasets which deviate from this pattern are uneven, and 319 



likely to be biased in complex and unpredictable ways. We should instead seek out 320 

datasets with a higher level of evenness.  321 

 Under the standard statistical assumptions, if the genome is sampled at a uniform 322 

rate everywhere, the coverage should follow a Poisson distribution, 𝒫(𝑘|λ). However, 323 

it is easy to show that the coverage of any platform exhibits a significantly greater 324 

dispersion than a Poisson distribution with the correct mean. This is generally 325 

interpreted as being indicative that there is not just one rate, 𝜆, at which the genome is 326 

sampled, instead there are multiple values, over which the distribution is marginalised 327 

[19]. 328 

 In Supplementary 0, we use this information to generate the following 329 

unevenness metric:  330 

𝒰 =  
Var(coverage) - 〈coverage〉

Var(coverage) 
 331 

Where Var(coverage) and 〈coverage〉 are the standard statistical variance and mean of 332 

the non-zero coverage2 distributions respectively. This value is zero when the 333 

coverage distribution is a perfect Poisson distribution, and is arbitrarily large for 334 

distributions which have many values of 𝜆 contributing to them. We should therefore 335 

favour platforms which generate smaller values of 𝒰. 336 

 337 

Metric 4: Capability 338 

Capability is the measure of usefulness of the dataset, the ability for the dataset to 339 

improve the outcome of a genetic inquiry than would otherwise be achieved without 340 

long-range information. A more capable platform produces data which allows the 341 

assembly to be vastly improved, and should therefore be preferred.  342 

 We measure the capability by comparing the N50 and N90 metrics of a 343 

scaffolding with and without the assistance of long range information. The N50 344 

                                                 
2 We focus on the non-zero coverge distribution since the designs of the Hi-C and 10x protocols mean 

higher zero-coverage is to be expected, but the non-zero coverage should be unaffected. 



metric is the standard measure of ‘completeness’, it is the length of the shortest 345 

continuous sequence such that all longer sequences make up more than 50% of the 346 

genome. N90 is defined similarly, but encapsulating 90%. Larger values for N𝑥 are 347 

preferred, as this indicates that more of the genome has been grouped into larger, 348 

contiguous fragments.  349 

 350 

Pair-Linked Reads 351 

Of the three companies that have commercialized Hi-C; Cantata (formerly Dovetail), 352 

Arima, and Phase, the most widely applied  technologies are  OmniC (Cantata) and 353 

Arima. In this study, we only carry out analysis on Arima Hi-C reads and 354 

comparisons are performed between the two generations of Arima technology (V1 355 

and V2), to reveal characteristics and library improvement by the platform. In total, 356 

we obtained three human datasets, two from V2 (NA24385-AJ and NA12878-CEU) 357 

and one from V1 (NA12878-CEU; see Table 1).  358 

Hi-C maps are shown in Figure 2 for three human samples by mapping the reads 359 

to the human reference assembly GRCh38. In these plots, regions of high density 360 

indicate real-space colocation of the genome – though there are some notable 361 

deviations from this; in particular, highly repetitive regions can cause spurious over-362 

and-under densities, characterised by a cross-shape running through, i.e. the 363 

centromere of each chromosome. To explore the quality of these datasets in more 364 

detail, we present Figure 3 which consists of three separate plots showing link-365 

separation distance (association), translocation rates (accessibility) and base coverage 366 

(evenness) respectively. Tabulated information regarding the metrics is also presented 367 

for accessibility (Table 1) and evenness (Table 3). 368 

Fig. 3A shows how the long-range information is distributed in the Hi-C 369 

datasets: as expected we see a peak of very strongly associated regions in the region 370 

of 100-500bp (probably due to topologically-associated domains, TADs), and a long 371 

power law tail for the three human datasets. For demonstration purposes, we also 372 

include an additional dataset – derived from Oak – which demonstrates a strong 373 

deviation from the power law structure. In assessing the association demonstrated 374 

here, we would say that the oak should be penalised due to this deviation whilst the 375 



human datasets are comparatively much nicer. Aside from this, the plots demonstrate 376 

that V2 datasets have more information stored in longer length reads than the V1, and 377 

hence have a stronger association. 378 

The Usability metric is shown graphically in Fig. 3b and in more detail in Table 379 

1. We find that the V1 dataset shows a consistently poorer mapping rate, PCR 380 

duplication rate and translocation rate over the V2 datasets, resulting in a usability of 381 

0.328, compared to 0.53 and 0.60 for the V2 data, though we do note from Fig. 3B 382 

that the difference between human datasets was, on some chromosomes, more 383 

pronounced than the difference between platforms.  384 

Fig. 3C and Table 3 show the evenness statistics. Fig. 3B shows the raw 385 

coverage data for the Hi-C data, along with a standard Illumina sequencing of the 386 

NA12878-CEU sample for comparison: given that the Illumina data has been 387 

sequenced more directly, with fewer intervening biochemical alterations, we should 388 

expect it to be the “purest” sample. Visually, we can see that this is the case: the 389 

Illumina is tightly peaked and resembles a Poisson distribution. The V2 datasets – 390 

though sampling to slightly different depths – show a similar “fattened Poisson” 391 

distribution, and the V1 data seems to be the least pure sampling, showing a strong 392 

overdensity at low base coverage. These observations are carried through by the 393 

statistical metric developed in 0: the Illumina data was given a score of 2.7, whilst the 394 

V2 platforms both scored approximately 5, and the V1 platform scored 10, indicating 395 

a strongly uneven coverage. This would indicate that whilst there is some statistical 396 

bias in the V2 data, it is significantly less than that of the V1. 397 

From the information presented here, we would conclude that the V2 platform 398 

produces data which robustly outperforms V1, with the two V2 datasets very close 399 

together in quality: V2 NA24385-AJ has a slightly higher mean base coverage, but V2 400 

NA12878-CEU scores slightly better on the global accessibility and evenness metric. 401 

In the next section, we will demonstrate how Hi-C data can be used to aid Genome 402 

Scaffolding, and hence asses the usability of these datasets.  403 

Chain-Linked Reads  404 

Due to their similarity in mechanism and data output, we discuss the 10x and 405 

Haplotagging qualities together, presenting an analysis on five datasets,  two from 406 

from 10x (human and hummingbird) and 3 from Haplotagging (human, rat and oak). 407 



The human 10x dataset was downloaded from the 10x Genomics website and 408 

hummingbird dataset is part of the VGP project (see Data availability). The 409 

Haplotagging datasets of human, rat and oak were sequenced by the Sanger Institute 410 

as part of the Darwin Tree of Life project. We note that, since the data arises from 411 

wildly different species, we must take care with our inferences that the differences 412 

arise from the choice of platform rather than the choice of species: any strong 413 

comparisons should be based primarily on the human samples.  414 

 In Figure 4 we see the distribution of molecule lengths for the CLR platforms, 415 

which we use as a measure of the association, and in  Error! Reference source not 416 

found. computes the associated barcode collision frequencies for these molecule 417 

distributions. We find that all of the platforms produce molecules which have 418 

collision rates below 0.1%, and have mean molecule lengths in the region of 50kb. 419 

We note that the 10x platforms have a more prominent tail at the high-length end of 420 

the distribution, most evident through the N50 values: the 10x N50 values exceed the 421 

mean length by 40kb, whilst the haplotagging N50 exceed the mean by only 20kb, 422 

indicating the 10x has a stronger tail of high-association data included, even if the 423 

bulk of the data has similar associations.  424 

Table 2 shows the PCR duplication rates and the unmapped rates (and hence the 425 

accessibility) as well as N50 reads per barcode. We can see clearly that 10x has lower 426 

PCR duplications than haplotagging, although the inverse is true for the unmapped 427 

rate: this could be largely due to the differing tools used to analyze the datasets (EMA 428 

for haplotagging versus LongRanger for 10x), that the 10x data is several years old, 429 

whilst the haplotagging is state-of-the-art, and we note that the total accessibility is 430 

broadly the same. Probably of more importance is that 10x data exhibits a higher 431 

number of N50 reads per barcode than haplotagging. 432 

 In Figure 5, we demonstrate the coverage profiles of the CLR datasets, in their 433 

raw form in 5a, and, to remove the effects of differing sequencing depths, a 434 

normalised form in 5b, where the coverage is given as a fraction of the maximal 435 

value. In these figures we can see a number of clear features: firstly, it is clear that 436 

both the oak and the rat show extremely strong deviations from an even profile: we 437 

hypothesise that this may be due to the effects of  highly repetitive regions (that rats 438 

are known to possess [20]), which causes some regions of the genome to be 439 

erroneously ‘covered’ thousands of times, whilst other regions are deprived of 440 

coverage. The human profiles are similar in shape to the Illumina curve. However . 441 



we note that the high coverage end (as with the rat, likely a spurious tail due to over-442 

coverage of repetitive regions) is suppressed relative to the Illumina sample, an 443 

indication of the long-range information allowing correct alignment of some repetitive 444 

regions. Nevertheless, we do see a stronger bias towards the low coverage end in both 445 

the 10x and haplotagging than in Illumina. In contrast, the hummingbird displays a 446 

remarkably Poisson-like shape, in large part due to the almost total absence of a 447 

repetitive high-coverage tail – likely a feature of a small, non-repetitive genome [21].  448 

These visual conclusions are supported by the unevenness metric in Table 3, 449 

where we see both the rat and the oak scoring very poorly (11.5 and 43.6 450 

respectively), the humans scoring between 2 and 9 (illumina: 2.7, haplotagging: 5.1 451 

and 10x: 8.9), and the hummingbird with the lowest score of 1.4.  We note that the 452 

haplotagging’s improved score over the 10x platform is likely a feature of the more 453 

powerful suppression of the over-coverage of repetitive regions, rather than of an 454 

improvement at the low-coverage end: this might indicate that the haplotagging is 455 

more successful in allowing alignment of repetitive regions than 10x.  456 

From the metrics presented here, we conclude that, for base polishing, 10x data is 457 

superior to that of Haplotagging due to its slightly higher association strength. 458 

However, Haplotagging has a larger number of unique barcodes, resulting in a much 459 

lower collision rate, and this means that it is more efficient to handle large number of 460 

samples when low coverage data is targeted. In addition, we recall that the statistical 461 

properties of the haplotagging platform indicate that haplotagging allows better 462 

alignment of highly repetitive regions than 10x.  463 

TELL-Seq  464 

Like haplotagging, TELL-Seq is a promising successor to 10x technology, and so we 465 

wish we could  have a similar analysis of the platform against the metrics we have 466 

formulated here. However, the authors were unable to produce a TELL-Seq library of 467 

sufficient quality to provide a viable comparison. We must therefore rely on the 468 

literature (i.e. [12]) when discussing the properties of TELL-Seq. 469 



Applications 470 

In this section we briefly outline some of the main applications for long-range data, 471 

and discuss how this has been applied in the literature.  472 

Genome scaffolding 473 

Genome scaffolding is the process by which a number of continuous sequences 474 

(‘contigs’) generated from overlapping reads are linked together into a single structure 475 

(a scaffold) of known sequences, separated by gaps of unknown sequences but where 476 

the length of the gap is relatively well constrained. This forms a critical step in 477 

genome assembly [22], but conventional means are both laborious and 478 

computationally intensive, though recent advances in long-range sequencing 479 

technologies have improved the continuity of genome scaffolds [23], for example, the 480 

assembly quality thresholds proposed by Vertebrate Genome Project (VGP) are that 481 

contig N50 > 10Mb and the scaffold N50 is the chromosome length [6], indicating 482 

that chromosome-scale scaffolding is now routinely possible. 483 

Pair-Linked Reads  484 

The Hi-C protocol provides a fast and lower-cost way of constructing scaffolding 485 

from the contigs, given that the spatial information within Hi-C Pair-Linked Reads 486 

can identify whether contigs come from the same chromosome and infer the correct 487 

orders of the contigs within each chromosome based on the relative proximity 488 

between bases in each contig [14]. This technology is widely used to assemble the 489 

contigs of eukaryotic genomes into chromosome-scale scaffolds [6, 22], and has 490 

recently been applied to assemble the giant and complex genome of Chinese Pine into 491 

a chromosome-level assembly [24]. To further improve the quality of genomic 492 

assembly, some studies evaluated the different sample preparation kits/protocols and 493 

computational programs and identified the optimal conditions for Hi-C scaffolding 494 

[25]. 495 

To demonstrate how Hi-C data can improve the quality of scaffolding, we 496 

applied the above methods to the human genome. 54X HiFi reads from HG002 were 497 

downloaded from GIBA and an assembly was obtained using Hifiasm [26] with 498 



contig N50 at 45.1 Mb – this represents the baseline shown in Figure 6A, which is a 499 

standard Hi-C proximity map. However, without scaffolding, the proximity map 500 

shows a high degree of fragmentation. After removing haplotype duplications, the 501 

contigs were further assembled to chromosome-level scaffolds using ~30X Hi-C reads 502 

and the YaHS scaffolding tool [27]. The resulting maps for Arima V1 (Figure 6B) and 503 

Arima V2 (Fig. 6C) are shown: after scaffolding, chromosome blocks are clearly seen 504 

and the fragmentation visibly reduced. Table 4 details how the lengths of the 505 

assembled fragments vary after applying the Hi-C data: we find that although V1 506 

produces slightly higher N50 scaffolds and a larger maximum length scaffold, the V2 507 

platform has a higher mean length, indicating a significant reduction in the number of 508 

poorly-scaffolded contigs, consistent with our earlier analysis of these platforms. 509 

 Detailed instructions on genome assemblies are provided in Supplementary. 510 

Assembly pipelines/instructions/recommendations can also be found in VGP, see 511 

Rhie, et al., [6]. 512 

Chain-Linked Reads 513 

The Chain-Linked strategy provides an effective and less expensive alternative 514 

technology than NGS mate pair data for genome scaffolding [22], since the nature of 515 

these platforms groups reads by their proximity in the genome (absent any barcode 516 

collisions). The information retained from long stretch sequences can be used to link 517 

the different contigs to chromosome-level scaffolds, a strategy which is already 518 

widely used for genome scaffolding in a variety of complex and polyploid species. 519 

For example, in an early study, 10x reads were applied to assist in scaffolding of 520 

genome sequence of Triticum urartu, the progenitor of the A subgenome of tetraploid 521 

and hexaploid wheat [28], and Lee et al. [29] reported that 10x linked reads were 522 

successfully used to correct and scaffold the assembly for an allopolyploid rapeseed. 523 

Currently, 10x-based approaches can no longer be used due to the withdrawal of 524 

the product, but alternative linked-read technologies have developed based on similar 525 

methods, such as Haplotagging and TELL-Seq [12, 13]. As we have seen, the 526 

association strength between these platforms is similar, and hence these platforms all 527 

offer the ability to produce high quality scaffolding, an assumption which was 528 

validated when Chen et al. [12] completed a comprehensive assessment of TELL-Seq 529 

using the sequenced data from sample NA12878 and NA24385. The TELL-Seq data 530 



of NA12878 produced a de novo assembly with a scaffold N50 of 31.5 Mb, the 531 

longest contig 109.2Mb and the longest alignment of 23.6 Mb.  532 

 533 

De novo genome assembly 534 

De novo genome assembly is the fundamental process in reconstructing a genome 535 

from sequencing reads without a reference sequence [30]. A whole-genome assembly 536 

with high level of completeness, continuity and accuracy is the key, which can 537 

significantly enhance the reliability of the downstream analyses. In general, the 538 

primary step for de novo assembly from the collection reads consists of three phases, 539 

contig assembly, scaffolding and gap filling. As we saw in 0, both Pair- and Chain-540 

Linked Reads can connect and order contigs into a ‘scaffold’ in the second phase, 541 

however, Chain-Linked Reads also offer additional support for the other procedures 542 

involved in de novo assembly, due to their inherently more structured nature. 543 

10x technology has been used extensively for the de novo assembly of the 544 

eukaryotic and prokaryotic genomes [3]. For instance, the first complete genome 545 

sequence for the mound-building mouse, Mus spicilegus, was generated with 10x 546 

reads and resulted in the de novo assembly of a 2.50 Gbp genome with a scaffold N50 547 

of 2.27 Mbp [31]. Using 10x data and the Supernova assembler, Ozerov et al. [32] 548 

assembled a ∼0.8Gb draft genome of the  Silurus glanis, an important species for 549 

freshwater ecosystem balance. It has also been demonstrated that 10x data can be used 550 

to assemble high accuracy contigs and scaffolds, even for large, highly similar 551 

repetitive sequences, polypoid plant genomes [3, 33].  552 

As comparatively newer technologies, the non-10x CLR platforms have seen less 553 

ubiquituous use in de novo assembly, though Chen et al. [12] did introduce the TELL-554 

Seq platform by immediately providing de novo assembly of bacteria (Escherichia 555 

coli, Campylobacter jejuni, Rhodobacter sphaeroides) and humans (NA12878). The 556 

human assembly showed “longer aligned contig length and at least 28% and 71% 557 

fewer misassemblies than other linked-read or nanopore methods, respectively” [12]. 558 

In addition, some attempts have been made to use haplotagging for de novo assembly, 559 

though the success has been more limited [34]. 560 

Although de novo genome assembly can be performed by using CLR 561 

technologies alone, most current studies adopt a hybrid strategy of multiple 562 



technologies to complete genome assembly. For example, Batra et al. [35] performed 563 

a de novo genome assembly of the olive baboon using a hybrid sequencing approach 564 

of 10x sequencing, Oxford Nanopore sequencing, Illumina paired-end sequencing and 565 

Hi-C, which have complementary advantages. Lind et al. [36] generated a high-566 

resolution de novo chromosome-scale genome assembly for the Komodo dragon 567 

Varanus komodoensis using data from different platforms, including 10x Genomics 568 

linked-reads, Oxford Nanopore long reads, PacBio long reads and Bionano optical 569 

mapping.  570 

Variation detections 571 

One of the most fundamental goals in genetics is to link genomic variations and the 572 

evolution of traits between populations or species. DNA polymorphisms are 573 

widespread genomic variations among individuals and include single-nucleotide 574 

variants (SNVs), small insertions and deletions (Indels; <50 bp), and structural 575 

variations (SVs). Many methods have been proposed to test DNA changes across the 576 

genome from different sequencing technologies, but there are still considerable 577 

limitations on what can be achieved in SV detection due to technical difficulties of the 578 

standard short-read platform. The long-range information provided by CLR and PLR 579 

platforms can improve detection for haplotype-specific deletion and large SV [37, 580 

38].  581 

Pair-Linked Reads 582 

Since Hi-C technology detects regions of high interaction probability in a genome, 583 

this intrinsically makes it particularly useful for detecting SVs. One of the main 584 

advantages of Hi-C is that it can accurately detect SVs with low-depth sequencing 585 

data. This feature provides a higher chance of identifying SVs at repetitive regions in 586 

complex genomes.  587 

As a result, Hi-C has been demonstrated to be a promising technology to 588 

precisely detect SVs, including chromosomal rearrangements and copy number 589 

variation in plant and human genomes [39, 40]. In recent years, several research 590 

projects have shown the ability of Hi-C to support identifying three-dimensional 591 

genome organization alterations as a result of SVs in the human cancer genome [41, 592 

42, 43]. Hi-C has also been applied to screen the complex genomic rearrangements 593 



associated with the development of disease in humans. For example, Melo et al. [44] 594 

used Hi-C to investigate the genetic variation that causes developmental disorders, 595 

and Hi-C was used to detect multi-megabase polymorphic inversions in wheat and 596 

barley [45, 46].  597 

Chain-Linked Reads 598 

Recent work has used SNVs detected by 10x sequencing technology to draw the 599 

landscape of meiotic recombination in plant population at the genome-scale resolution 600 

[47, 48], and Rommel Fuentes et al. [48] pinpointed meiotic crossovers of 601 

interspecific hybrid F1 tomato pollen at the SNV resolution level by using 10x data. 602 

This technique also has been a powerful tool for detecting genomic variants 603 

associated with human diseases. A number of novel and important SVs associated 604 

with metastatic castration-resistant prostate cancer were identified by 10x whole-605 

genome sequencing [49], and CLR sequencing validated the inverted rearrangement 606 

in the triple-negative breast cancer sample TN-19 [50]. A 2020 study confirmed that 607 

10x sequencing provides a cost-efficiency way of mining genomic variants at 608 

moderate depth and population scale [51], and it was also reported that 10x 609 

technology could be used to screen nucleotide resolution of the structural variants 610 

linked with potential risk loci in small and rare disease cohorts [52].  611 

Haplotagging is particularly suitable for constructing the original haplotype, and 612 

as a result has been successfully applied to construct the genome haplotypes in the 613 

two butterfly species, and detect the genetic markers controlling the distinct wing 614 

color patterns [13], indicating that haplotagging might be a promising method to 615 

identify the superior haplotype alleles in the diverse plant or animal populations for 616 

model and non-model species. Bhat et al. [18] thought that this technique would 617 

provide important support for haplotype-based breeding for crop improvement.  618 

The utility of the TELL-seq protocol, for detecting genome variations has not 619 

been nearly so widely used in the plants or animals, though the study by Chen et al. 620 

[12] demonstrated that linked-read data generated by TELL-seq could be used to 621 

screen genetic variation using an analysis pipeline developed for the 10x technology.. 622 

Althought this means TELL-seq also could be used to detect SVs, the initial study 623 

found that it missed some deletions in the NA12878 sample. The authors thought that 624 

two factors (the short library insert length and different barcoding chemistry) might be 625 



responsible, and they encourage the research community to further develop and 626 

optimize analytical tools to improve the ability to detect SV using linked-read data 627 

[12]. More extensive validation studies are therefore needed to prove whether TELL-628 

seq can accurately detect genome-wide variation as an alternate method for the 10x 629 

platform. 630 

Other Applications 631 

Phasing 632 

Phasing – the assignment of alleles to either the maternal or paternal haplotype – is 633 

another potential application for long-range reads, since even long reads can struggle 634 

to accurately identify heterozygosity and correctly assign differences to haplotypes. 635 

Along with de novo assembly, Chen et al. demonstrated how TELL-seq can be used 636 

as a powerful tool for phasing the genome :TELL-Seq phasing results on NA12878 637 

and NA24385 samples showed that the highest heterozygous rate is 99.9% and 638 

99.8%, the phasing block N50 is 16.1Mb and 13.4Mb, the longest phasing block is 639 

67.5Mb and 59.2Mb, and adjusted N50 (1.24 Mb), and the lowest switch error rate is 640 

0.04% and 0.08, respectively [12]. 641 

Most recently, a study compared the performance and accuracy of genome 642 

phasing between Hi-C and 10x Genomics Linked Read in Hanwoo Cattle [53]. The 643 

results of this study showed that the phasing strategy with 10x linked-read technology 644 

and Long Ranger software displayed the best phasing performance. The best strategy 645 

had the highest phasing rate (89.6%), longest adjusted N50 (1.24 Mb), and lowest 646 

switch error rate (0.07%). Moreover, the phasing accuracy and yield of the best 647 

strategy stayed over 90% for distances up to 4 Mb and 550 Kb, respectively. 648 

Metagenomics 649 

Another application of Chain-Linked Read sequencing technology is assembling 650 

high-quality metagenome of microbial species, which is able to improve continuity 651 

and accuracy in de novo assembly using barcode information, as comprehensively 652 

evaluated by Zhang et al [54]. This study showed that 10x reads significantly 653 

improved the metagenome assemblies when compared with Illumina short-reads, 654 



although both were outperformed by PacBio CCS long-reads. Due to the low cost and 655 

the high base quality, sequencing the metagenomes using Chain-Linked Read 656 

technology remains persuasive. Recently, Roodgar et al., [55] explored the 657 

longitudinal trajectories of gut microbiome for a single individual using linked-read 658 

metagenomic sequencing in 10x Genomics Chromium platform. 659 

 660 

Selection of data platforms 661 

With rapid development of long read technologies for longer read length and better 662 

base accuracy, high profile projects have been lunched such as Vertebrate Genomes 663 

Project (VGP) which aims to sequence all the vertebrate species [6] and Darwin Tree 664 

of Life (DTOL) which plans to generate de novo assemblies for the 70,000 eukaryotic 665 

genomes in Britain and Ireland ( https://www.darwintreeoflife.org ). More 666 

ambitiously the Earth BioGenome Project was proposed to decode ~1.5 million 667 

eukaryotic species, including animals, plants and microbiomes [7]. If targeting 668 

chromosome-level assemblies, Hi-C data sequencing should be planned, either with 669 

Arima V2 or OminC. When sequencing Hi-C in large volumes of data with various 670 

speics, the assessment metrics and methods presented in the study could be used for 671 

data QC. In the cases where there are choices of platforms, data assessement and 672 

comparsions are ensential in order to ensure proper Hi-C libraries are prepared. For 673 

small research groups, contracting Hi-C sequencing is one of the options while most 674 

sequencing companies provide Hi-C QC reports.  675 

 676 

Chain-Linked reads, such as 10x, Haplotagging and TELL-seq can be used for 677 

consensus polishing to improve the quality of genome assembly and enhance the 678 

detection of genomic structure variants. We do note that, as of June 30, 2020, 10x 679 

Genomics discontinued the sale of Chromium Genome and Exome product lines – the 680 

most prominent CLR platform, on which a significant portion of the literature was 681 

focused. Various alternatives have been suggested: in this work we studied Sage 682 

Science’s TELL-Seq platform and Haplotagging. Whilst we found that haplotagging 683 

data was in some cases of a higher quality than 10x, haplotagging beads are not (yet) 684 

https://www.darwintreeoflife.org/


commercially available, being obtainable from the Chan Lab at the Max Planck lab in 685 

Tuebingen only via academic collaboration. Commercial supply of these reagents 686 

could make haplotagging a powerful tool, as the beads are potentially inexpensive, 687 

which would allow haplotagging to be used widely in  genetic population sequencing 688 

studies. Additionally, more work on analyzing and processing non-10x data would 689 

futher enable the community to make use of these potentially powerful platforms.  690 

Software tools 691 

To date, a large number of tools have been developed to analyze data generated from 692 

long-range sequencing technologies [54, 56, 57]. Here, we highlight recent 693 

developments in software tools used for genome scaffolding, de novo assembly and 694 

variation detection based on the long-range linking information.  695 

Hi-C Analysis Tools 696 

Genome Scaffolding with Hi-C 697 

Several scaffolding methods have been developed for assembling contigs to scaffolds 698 

based on Hi-C data, examples of which are shown in Table 5. There are many 699 

different approaches which can be taken in designing these tools, which we broadly 700 

split into three categories: deterministic, probabilistic, and improver.  701 

 Deterministic tools use algorithms which always return the single result which 702 

optimises some underlying metric. Some examples of deterministic algorithms 703 

include: 704 

 Heirarchical clustering  705 

Typically using an agglomerative approach, such as in the early tools 706 

LACHESIS [58] and dnaTri [59] (both no longer actively developed), and 707 

more recently by ALLHIC [60], a framework particularly designed for 708 

scaffolding autopolyploid or heterozygous diploid genomes. 709 

 Best-Neighbour 710 

Though deterministic, best-neighbour methods return only an approximation 711 

to the desired answer, at the benefit of vastly increased speed. 3D-DNA [61] 712 

used this approach after correcting the input contigs. The best-neighbour 713 



approach then assembles the contigs into one megascaffold, before it is then 714 

cuts to a number of chromosomes on the basis of Hi-C contact matrix. 715 

 Maximal-Matching 716 

This approach is used in the SALSA1 [62] tool, which first corrects 717 

misassemblies derived from the input contig using a low Hi-C mapping rate 718 

as the signal for error and then orients and orders the corrected contigs to 719 

generate scaffolds using a maximal matching algorithm. 720 

 Novel approaches 721 

Some more novel solutions include SALSA2 [56], an overhaul of the 722 

SALSA1 program that can take advantage of all the interaction information 723 

from the Hi-C map to reduce assembly errors using a novel iterative 724 

scaffolding method, as well as the newly developed YaHS [27] , which 725 

introduced a novel algorithm to establishing the contact matrix to obtain the 726 

more accurate inferences of contig joins. 727 

Probabilistic approaches, in contrast, return results which are not exact, but are good 728 

approximations to a desired solution where direct computation would be prohibitive. 729 

We identify two main classes of probabilistic algorithm.  730 

 Markov Chain Monte Carlo 731 

MCMC methods are a class of algorithms which attempt to efficiently 732 

approximate drawing values from an underlying (unknown) distribution 733 

function. This is used by GRAAL [63] which uses a MCMC algorithm to 734 

generate scaffolds from the Hi-C data. Recently, Baudry et al. [64] developed 735 

instaGRAAL, an upgrade of the GRAAL version, which can be used to 736 

assemble large genomes. 737 

 Maximum Likelihood 738 

Maximum likelihood methods use Bayesian formulations to derive a 739 

probability of observing given results, given a hypothesized original state. By 740 

optimizing this function, the original state can be inferred. This approach is 741 

used by HiRise, the tool developed by Dovetail Genomics for their Hi-C 742 

service [65].  743 

Finally, we note a class of tools which we dub improvers, these tools do not perform 744 

the assembly themselves, but act to improve the quality of assemblies performed 745 

using other tools. Examples include HIC-Hiker [66], a probabilistic and dynamic 746 



programming approach which can improve the quality of scaffolds produced by other 747 

Hi-C scaffolding software, and the recently developed EndHic [67], which can reduce 748 

the error rate of assembly using only the the Hi-C contacts from the end regions of the 749 

contigs.  750 

Several studies have evaluated the performance of different scaffolders for 751 

scaffolding accuracy [60, 67, 68, 27]. For example, a recent study evaluated the 752 

performance of five Hi-C scaffolders including LACHESIS, HiRise, 3D-DNA, 753 

SALSA2, and ALLHiC; the results found that the HiRise and LACHESIS display the 754 

best performance on average under all tested scripts [68]. However, with all the 755 

available software, it remains challenging to correctly assemble large contigs into 756 

chromosomes, and manual checking and curation are often necessary.  The selection 757 

of suitable tools therefore often remains an exercise in trial-and-error by the 758 

researcher. 759 

Variation Detection with Hi-C 760 

There exist several computational tools which have been developed to identify SVs 761 

from chromatin interaction data. We divide these by the kinds of SV which they can 762 

identify.  763 

 Tools which can identify Copy Number Variations (CNVs) include HiCNV [41], 764 

OneD [69] and HiNT-CNV [70]. Generally speaking, these tools use Bayesian 765 

information criteria (and in the case of HiCNV and OneD, Hidden Markov Models, 766 

HMM) to identify the location of CNVs. Similar methods can be used to identify 767 

interchromosomal translocations – the tools HiCTrans and HiNT-TL are packaged 768 

alongside HiCNV and HiNT-CNV respectively [41, 70]. Although the above 769 

algorithms were used to screen the SVs within Hi-C data, most of these methods can 770 

only detect interchromosomal translocations and long-range intrachromosomal SVs at 771 

a low resolution. 772 

 Some more specific tools include the HiTea [71] software, developed specifically 773 

for identifying mobile transposable element insertions in Hi-C data, as well as  774 

NeoLoopFinder [72]; developed for predicting SV-induced chromatin loops, though 775 

also capable of detecting complex SVs with Hi-C data. Wang and colleagues [40] 776 

have also presented a computational framework, EagleC, which integrates deep-777 



learning and ensemble-learning strategies to detect a full range of SVs at high 778 

resolution.  779 

Overall, there are still strong demands for analysis tools that can use Hi-C data 780 

for high-resolution SV detections. 781 

Chain-Linked Read Analysis Tools 782 

Genome Scaffolding with CLR 783 

Generally speaking, most CLR tools should be equally effective, regardless of which 784 

CLR platform was used – however due to its prominence, many tools were designed 785 

specifically for 10x, and so their applicability to another linked-read platform, 786 

including TELL-seq and haplotagging, still need to be further verified. Unlike the Hi-787 

C tools where a wide variety of differing algorithms were used for scaffolding, CLR 788 

algorithms broadly follow the same approach: first attempting to unambiguously 789 

identify the HMW-DNA fragments each read originated from, before using these 790 

fragments as the basis for a scaffolding.  The tool fragScaff was first developed for 791 

scaffolding the data from contiguity preserving transposase sequencing, but was one 792 

of the first tools to receive explicit support for 10x reads [73]. fragScaff uses an 793 

explicit threshold metric to determine barcode uniqueness, before constructing and 794 

traversing a scaffold graph. ARCS and ARKSare two closely related tools developed 795 

by the same team [74, 75]: ARCS is a stand-alone genome scaffolding developed 796 

specifically for 10x linked reads, whilst ARKS  uses a kmer mapping strategy to align 797 

linked reads and contigs to improve computational efficiency, and is an optional 798 

additional mode for ARCS. Hiltunen et al. [76] presented a software package 799 

ARBitR, which is explicitly designed to work on multiple platforms beyond 10x. The 800 

main distinctive feature of the ARBitR is that it consider the overlaps between the 801 

involved contigs when splicing, so as to improve the genome scaffolding accuracy.  802 

Other CLR tools include SLR-superscaffolder [77], which uses an inverted top-803 

down approach, and Architect, which uses co-barcoding and paired-end information 804 

to improve the contiguity of genome scaffolding [78].  805 

De novo Assembly with CLR 806 



Although there is much mature software that can be applied to de novo assembly of 807 

genomes with short-read sequence data [30, 79, 80], only a few comparatively fewer 808 

tools have been developed for generating a de novo genome from CLR data.  809 

Supernova [16] was developed specifically for de novo assembly of genomes that 810 

were deeply sequenced using 10x linked-read sequencing platform, by 10x Genomics. 811 

Compared to other methods, Supernova can generate phased diploid assemblies over 812 

very long distances. Moreover, despite being a 10x product, Supernova can also be 813 

used for the data generated on other CLR platforms, such as TELL-seq [12]. 814 

Other assembly tools often use a de Bruijin-type approach, for example, 815 

cloudSPAdes [81] (an extensible module of the SPAdes assembler) uses CLR3 data  816 

to expand the de Bruijn graph, and can also be applied to metagenomic or hybrid 817 

assembly. The Ariadne [82] module uses a novel algorithm, based on de Bruijin 818 

Graphs, to handle the barcode deconvolution problem. In their introduction of the 819 

TELL-Seq platform, Chen et al. [12] presented TuringAssembler, another de Bruijn 820 

graph-based assembler.  821 

Whilst not strictly related to de novo assembly, we also note that Bishara et al. 822 

presented an assembler, Athena, that use the tag information from linked-read 823 

sequencing to improve metagenome assembly [83].  824 

 825 

Variation Detection with CLR 826 

A number of tools developed to detect genetic variations in NGS data can also be 827 

used on CLR data without significant modification, such as GATK [84], SNVer [85], 828 

VarScan [86] and VarDict [87]. However, since these tools do not exploit the long-829 

range information, genome-scale SV detection remains limited, tools which are aware 830 

of the long-range information promise much greater detection power.  831 

Long Ranger [38] is the official program developed by 10x Genomics, which can 832 

screen variants and SVs, and combines a number of existing tools, such as BWA and 833 

GATK, augmented with long-range specific algorithms. GROC-SVs [37] adopt a 834 

similar strategy to Long Ranger for identifying SVs, but it performs local assembly on 835 

barcoded reads to test high-resolution complex SVs. Recently, a new structural 836 

                                                 
3 These platforms use the terminology “Synthetic Long Reads” (SLR), which we have attempted to move 

away from, preferring instead to refer to them as Chain-Linked Reads. 



variant calling software was presented, called LEVIATHAN [88], which can detect 837 

SVs in highly fragmented and heterozygosity genomes using similar methods. 838 

A “split molecule” approach has also proven successful, by identifying 839 

molecules which are Chain-Linked together, but aligned to disjoint parts of the 840 

genome.  VALOR [89] has been developed to discover large genomic inversions from 841 

linked-read data by an algorithm based on this “split molecule” signature and read 842 

pair signature, and an improved version, VALOR2 [90], can identify not only 843 

inversions but also other complex SVs involved in segmental duplications, 844 

translocations and deletions. LinkedSV [91] also uses split-molecule methods to 845 

simultaneously integrate barcode overlapping and enriched fragment endpoints to 846 

identify large SVs.  847 

NAIBR [92] identifies SVs by combining the split-molcule approach with a 848 

probabilistic model, and similarly, Xia et al. [93] developed the ZoomX tool using 849 

probabilistic models SVs signals would be represented in CLRs, meaning ZoomX can 850 

detect novel genomic junctions, and hence identify large rearrangements (>200kb).  851 

Conclusions 852 

Here, we discussed the methodologies and applications of long-range, non-local 853 

sequencing technologies, focussing on the Pair-Linked Read technology of Hi-C 854 

through the Arima V1 and V2 platforms, and the Chain-Linked Read platforms of 855 

10x, Haplotagging and TELL-Seq. Assessing the published literature, we found that 856 

Hi-C has been widely used in genome scaffolding to assemble the genome on a 857 

chromosomal level, using a wide variety of different algorithmic approaches. Hi-C 858 

technology has also been used for assembly curation as well as evaluation and recent 859 

efforts have been seen on structural variation detections. The various Chain-Linked 860 

Read platforms have been demonstrated to enhance the value of short reads for 861 

genome assembly and, in contrast to the PLR platforms, widely used for improved 862 

structural variation detection.  863 

We also introduced metrics with which to assess the quality of the sequencing 864 

data produced by these platforms, and briefly demonstrated that these metrics 865 

provided a robust insight into the ability of the platforms to provide useful genomic 866 



information to researchers finding, for example, that the Arima V2 platform produces 867 

significantly higher quality data than the V1 platform. 868 

From our analysis of the existing literature and from our quality metrics, we have 869 

found that long-range protocols, including Hi-C and Chain-Linked Read methods, 870 

have already been demonstrated to significantly improve the quality of genome 871 

assembly and enhance the detection of genomic structure variants, and as NGS 872 

technologies and the associated software pipelines continue to develop further, these 873 

technologies will continue to move from strength to strength.  874 

We have emphasised throughout this work the distinction between true long-read 875 

platforms and the long-range technologies which employ genome partitioning and 876 

barcoding to cluster reads into groups providing with much needed long-range 877 

information with only a modest cost increase over standard short-read sequencing. 878 

Whilst the development of Long-Read technologies would initially seem to make the 879 

short-read based technologies discussed here less attractive to researchers, we have 880 

demonstrated robustly that non-local information can help supplement Long-Read 881 

endeavours, and avoid some of the drawbacks of these emerging technologies, such 882 

that a combined long-read/long-range approach remains a cost-effective strategy for 883 

complex genome and pan-genome assembly, population genetics, and high-resolution 884 

analysis of complex traits.  885 
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List of Figures 921 

Figure 1. Work flow of library preparations for four long range platforms. (A) Hi-C; 922 

(B) 10x; (C) haplotagging; (D) Tell-seq. 923 

Figure 2. Hi-C contact maps for three human samples. (A) Arima V2 CEU 924 

(NA12878); (B) Arima V2 AJ (NA24385) and (C) Arima V1 CEU (NA12878). Here 925 

the data are shown in the form of two-dimensional symmetric matrics, where x and y 926 

coordinates represent the intensity of the physical interaction between two genome 927 

regions x and y at the DNA level. Each chromosome is seen as a shaded box and 928 

also there are no data points in Chromosome Y as these are female samples. 929 

Figure 3. Characteristics of Hi-C reads. (A) length distribution; (B) translocation rate; 930 

(C) base coverage. 3A also contains a fourth dataset, (Arima V2 Oak) which 931 

demonstrates the breakdown of the power-law relationship. 932 

Figure 4. Distributions of barcode length for various 10x and haplotagging samples. 933 

Here, for each barcode fragment, the minimum number of read pairs is set to 5 and we 934 

only collect fragments with a length >= 100bp.  935 

Figure 5. Base coverage profiles from various 10x and haplotagging samples with (A) 936 

unnormalized datasets and (B) normalized datasets. Here one Illumina PCR free 937 

dataset is also superimposed for comparison 938 

Figure 6. Hi-C contact maps on contigs and scaffolded assemblies. (A) Contigs; (B) 939 

Assembly with V1 data; (C) Assembly with Arima V2 reads. Here contigs are shown 940 

as individual boxes along the diagonal direction in (A). Scaffolds are seen in (B) and 941 

(C), where scaffolding level in (C) is better than that in (B). 942 
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Table 1: Features of Hi-C reads with three different datasets 993 

Datasets Read pairs Unmapped 

(%) 

PCR duplicated 

(%) 

Translocated 

(%) 

Accessibility N50 (Mb) N20 (Mb) N10 (Mb) 

Arima V2  

NA12878-

CEU 

352,429,304 20.9 6.8 12.7 0.596 47.9 96.3 130.3 

Arima V2  

NA24385-AJ 

413,162,798 24.8 6.1 16.2 0.529 47.2 104.9 141.9 

Arima V1  

NA12878-

CEU 

415,173,112 28.6 10.1 18.5 0.328 28.2 63.1 100.0 

 994 

 995 

Table 2: Features of 10x and Haplotagging linked reads technology with different samples. For the Tools, LR+S 996 

means the LongRanger tool and scaff10x, whilst EMA+S means EMA and scaff10x. 997 

Species Platform Tools Read pairs Unmapped 

Reads (%) 

PCR 

duplication 

(%) 

Accesibility  Moleular 

length 

(N50) 

Barcode 

N50 

(>=5 

reads) 

Barcode 

N50 

(>=3 

reads) 

Reads 

clustered 

(%) 

Human-

NA12878 

10x LR+S 669,583,370 10.1 21.0 0.689 94,611 81 80 88.2 

Hummingbird 10x LR+S 159,605,373 14.9 5.0 0.801 63,292 22 21 87 

Human Haplotaggin

g 

EMA+S 678,683,208 2.52 30.7 0.678 73,294 12 11 55 

Rat Haplotaggin

g 

EMA+S 742,824,305 2.5 
30.0 

0.675 78,250 11 11 50 

Oak Haplotaggin

g 

EMA+S 208,869,403 4.17 39.5 0.563 54,969 11 8 50 

 998 

Table 3: Coverage Evenness statistics 999 

Datasets Coverage Mean Coverage Variance Unevenness 

Human 

Arima V2  

NA12878-CEU 

31.2 195.0 5.3 

Arima v2  

NA24385-AJ 

38.8 273.9 6.1 

Arima V1  

NA12878-CEU 

32.1 363.1 10.3 

10x 

NA12878 

57.2 565.6 8.9 

Haplotagging 73.0 446.0 5.1 

Illumina 35.1 131.2 2.7 



Nonhuman 

10x Hummingbird 41.8 98.6 1.36 

Haplotagging Rat 83.3 3715.1 43.6 

Haplotagging Oak 90.64 1133.9 11.5 

 1000 

 1001 

 1002 

 1003 

 1004 

Table 4: Assembly stats from different Hi-C datasets 1005 

Data and Assembly Total Bases (Gb) Number of Sequences 
SEQUENCE LENGTH (MB) 

Mean N50 N90 Maximum 

HIFI READS – HG002 167.76 14,949,433 0.011 0.011 0.009 0.021 

CONTIGS WITH HIFIASM 2.866 1,126 2.54 45.1 6.93 116 

CONTIGS AFTER PURGE_DUPS 2.83 434 6.52 45.1 8.46 116 

SCAFFOLDS WITH ARIMA V1 2.83 162 17.5 152 78.4 324 

SCAFFOLDS WITH ARIMA V2 2.83 152 18.6 144 75.12 235 

 1006 

  1007 



Table 5: A list of analysis tools for long-range platform in different applications, detailing their properties and web 1008 

address. 1009 

Application Software Tool Year Properties URL 

H
i-

C
 

G
en

o
m

e 
S

ca
ff

o
ld

in
g
 

LACHESIS 2013 
Deterministic, agglomerative hierarchical clustering 

https://github.com/shendurelab/LACHESIS 

dnaTri 2013 https://github.com/NoamKaplan/dna-triangulation 

GRAAL 2014 Probabilistic MCMC https://github.com/koszullab/GRAAL 

instaGRAAL 2020 Probabilistic MCMC, refined for large genomes https://github.com/koszullab/instaGRAAL 

SALSA2 2019 Novel iterative scaffolding method https://github.com/marbl/SALSA 

3D-DNA 2017 Deterministic best-neighbour, megascaffold approach https://github.com/aidenlab/3d-dna 

HiRise 2016 Maximum Likelihood algorithm, official Dovetail product  
https://github.com/DovetailGenomics/HiRise_July201

5_GR 

ALLHIC 2019 
Deterministic hierarchical clustering on autopolyploid or 

heterozygous genomes 
https://github.com/tangerzhang/ALLHiC 

HIC-Hiker 2020 
Probabilistic, dynamic programming approach to improve quality of 

already-scaffolded data 
https://github.com/ryought/hic_hiker 

EndHic 2021 Improves quality of already-scaffolded data https://github.com/fanagislab/EndHiC 

YaHS 2022 Probabilistic, novel inference algorithm https://github.com/c-zhou/yahs 

V
ar

ia
ti

o
n
 d

et
ec

ti
o

n
 

HiCnv 2018 
Detects Copy Number Variations using Hidden Markov Models 

https://github.com/ay-lab/HiCnv 

OneD 2018 https://github.com/qenvio/dryhic 

HiCtrans 2018 Detects Translocations using Hidden Markov Models https://github.com/ay-lab/HiCtrans 

HiNT 2020 Detects both CNV and Translocations https://github.com/parklab/HiNT 

HiTea 2021 Identifies mobile transposable element insertions https://github.com/parklab/HiTea 

NeoLoopFinder  2021 Finds SV-induced chromatin loops https://github.com/XiaoTaoWang/NeoLoopFinder 

EagleC 2022 Deep-Learning method for full-spectrum SV detection https://github.com/XiaoTaoWang/EagleC 

C
h
a

in
-L

in
ke

d
 R

ea
d

s 

G
en

o
m

e 
S

ca
ff

o
ld

in
g

 fragScaf 2014 
Agglomerative hierarchical clustering 

https://github.com/adeylab/fragScaff 

Architect 2016 https://github.com/kuleshov/architect 

ARCS 2018 Designed specifically for 10x 
https://github.com/bcgsc/arcs 

ARKS 2018 k-mer mapping for improved efficiency in ARCS 

ARBitR 2021 Explicitly designed for multiple CLR platforms https://github.com/markhilt/ARBitR 

SLR-superscaffolder 2021 Divisive hierarchical clustering https://github.com/BGI-Qingdao/SLR-superscaffolder 

d
e 

n
o

vo
 A

ss
em

b
ly

 

Supernova 2017 Official 10x assembly product  
https://support.10xgenomics.com/de-novo-

assembly/software/overview/latest/welcome 

cloudSPAdes 2019 De Bruijin assembler, extensible to metagenomic or hybrid data 
https://github.com/ablab/spades/releases/tag/cloudspa

des-paper 

Ariadne 2021 cloudSPAdes module, deconvolves barcodes accurately https://github.com/lauren-mak/ariadne 

Athena 2018 Improves metagenomic assembly https://github.com/abishara/athena_meta 

TuringAssembler 2020 

Introduced explicitly for TELL-Seq data https://universalsequencing.com/software/ TELL-seq data 

analysis pipeline 
2020 

V
ar

ia
ti

o
n
 D

et
ec

ti
o

n
 

Long Ranger 2019 
Official 10x variation detection tool, uses augmented GATK 

approach 

https://support.10xgenomics.com/genome-

exome/software/downloads/latest 

GROC-SVs 2017 Simialr to Long Ranger, uses local assembly to improve resolution https://github.com/grocsvs/grocsvs 

NAIBR 2018 Probabilistic model using “split molecule” approach https://github.com/raphael-group/NAIBR 

VALOR 2017 Detects genomic inversion from “split molecule” signature 
https://github.com/BilkentCompGen/valor 

VALOR2 2020 Exppanded from VALOR to detect more types of SV 

ZoomX 2018 Novel probabilistic approach to detect large rearrangements https://bitbucket.org/charade/zoomx/src 

LEVIATHAN 2021 Can detect SVs in highly fragmented and heterozygosity genomes https://github.com/morispi/LEVIATHAN 
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Supplementary 1011 

Evenness Metric 1012 

In the ideal case, the sampling of the genome would be perfectly uniform, such that every base 1013 

was covered exactly the same number of times. Since this is practically impossible, we would instead 1014 

prefer that every base had the same chance of being covered, and allowing for some statistical noise. If 1015 

we model the sequencing process as one which samples each base of the genome at a mean rate 𝜆, 1016 

which is independent of the sampling rate of other bases, then the probability that a given base enters 1017 

the library 𝑘 times (i.e. has a coverage of 𝑘) is: 1018 

𝑝(𝑘|𝜆) =  
𝜆𝑘𝑒−𝜆

𝑘!
=  𝒫(𝑘|𝜆) 1019 

This is the standard Poisson distribution, and would be the result of a perfectly even sampling of the 1020 

genome. If, however, there is not a single value of 𝜆, but multiple different values, such that the 1021 

probability of a given value of 𝜆 is given by the distribution function 𝑓(𝜆), then the probability of 1022 

finding a coverage value of 𝑘 is given by a Polypoisson distribution, 𝑝(𝑘|𝑓) such that: 1023 

𝑝(𝑘|𝑓) =  ∫ 𝑓(𝜆)
𝜆𝑘𝑒−𝜆

𝑘!
 d𝜆.

∞

0

 1024 

The integral is carried out over the full support of the parameter 𝜆, that being the half-infinite interval. 1025 

We note that if 𝑓 is a normalized distribution function on this interval, then the total probability still 1026 

obeys: 1027 

∑ 𝑝(𝑘|𝑓) 

∞

𝑘=0

= ∫ 𝑓(𝜆) (∑
𝜆𝑘𝑒−𝜆

𝑘!

∞

𝑘=0

)  d𝜆
∞

0

 1028 

=  ∫ 𝑓(𝜆)d𝜆 = 1
∞

0

 1029 

The mean and the variance of a Polypoisson distribution are found from: 1030 

〈𝑘〉 =  ∑ 𝑘 𝑝(𝑘|𝑓) 

∞

𝑘=0

=  ∫ 𝜆𝑓(𝜆)d𝜆
∞

0

 1031 

Var(𝑘)  = (∑ 𝑘2 𝑝(𝑘|𝑓) 

∞

𝑘=0

) -〈𝑘〉2 =  ∫ 𝜆2𝑓(𝜆)d𝜆
∞

0

+ 〈𝑘〉 - 〈𝑘〉2 1032 

We note that the dimensional conflict of 〈𝑘〉 and 〈𝑘〉2 appearing in linear combinations is not a 1033 

problem since the Poisson distribution inherently only deals with dimensionless ‘counts’. Writing the 1034 

results above in terms of the variance and mean of 𝑓, we find that: 1035 

〈coverage〉 =  〈𝑓〉 1036 

Var(coverage) = Var(𝑓) +  〈𝑓〉 1037 

Previous works have set 𝑓(𝜆) equal to the Gamma distribution, in which case 𝑝(𝑘|𝑓) is equal to 1038 

the Negative Binomial Distribution. However, we note that there is no particular need to assign a 1039 

functional form to 𝑓, since all we are interested in is the dispersion of this relationship around the 1040 

mean. The index of dispersion is given by: 1041 



𝐷(𝑓) =
Var(f)

〈𝑓〉
  1042 

Hence: 1043 

𝐷 =  
Var(coverage) - 〈coverage〉

Var(coverage) 
 1044 

We reiterate that this is a measure of the dispersion of 𝑓 around its mean, and is hence a measure of 1045 

how Poisson-like the data is: zero indicates the data is perfectly Poisson like, whilst larger values 1046 

indicate that there are a significant number of processes altering how the genome is sampled. We 1047 

therefore use this quantity as a metric of the unevenness of the coverage of the genome, 𝒰 = 𝐷, with 1048 

smaller values being indicative of a more even coverage. 1049 

 1050 

 1051 

 1052 

Supplementary Figure 1: An example of how generating distributions𝑓(𝜆) (top) result in different Polypoisson 1053 

distributions (bottom). All distributions are chosen to have the same mean as the black curve (the Illumina human 1054 

data from Fig. 3), but with other parameters chosen for demonstration purposes rather than to provide a good fit to 1055 

the data. The multimodal models demonstrate that even though the Poisson distribution is monomodal, suitable 1056 

generating functions can generate multimodel Polypoisson distributions.  1057 



 1058 
Supplementary Figure 2: (Top) various distributions of the number of fragments of HMW-DNA which share a 1059 

barcode, the blue and orange curves are designed to approximate haplotagging, whilst the purple and brown 1060 

demonstrate 10x. (Bottom) the probability of barcode ‘collisions’ which result, as a function of the length of the 1061 

fragment, assuming a diploid genome length of 6.3Gb. Solid lines demonstrate direct collisions: overlapping 1062 

fragments which share the same barcode, whilst the dashed line shows ‘buffered collisions’, where the shared-1063 

barcode fragments do not overlap, but are too close together for reads to be unambiguously assigned to one or the 1064 

other.  1065 

 1066 

Supplementary Table 1: Collision-Frequency Analysis of the Chain-Linked Read platforms 1067 

Datasets Platform Genome 

Length 

Fragments-per-

barcode 

1% Collision Size 

(kb) 

Mean Fragment Length 

(kbp) 

Collision Frequency (%) 

Human-

NA12878 

10x 6.3Gb 10 2,100 59.2 0.03 

Hummingbird 10x 1.8Gb 10 580 44.6 0.08 

Human Haplotagging 6.3Gb 5 4,200 56.2 0.01 

Rat Haplotagging 5.5Gb 5 3,700 57.2 0.02 

Oak Haplotagging 1.4Gb 5 970 38.5 0.04 



Instructions on running assembly pipelines 1068 

 1069 
Software packages 1070 
 1071 
scaffHic 1072 
https://github.com/wtsi-hpag/scaffHiC 1073 
Note: scaffHiC contains PretextMap and we here use scaffHiC to process data and generate Hi-C maps as well as length 1074 
distributions. We did not use it for scaffolding as yahs is noteably better in genome scaffolding. 1075 
 1076 
PretextView 1077 
https://github.com/wtsi-hpag/PretextView 1078 
 1079 
purge_dups 1080 
https://github.com/dfguan/purge_dups 1081 
 1082 
yahs 1083 
https://github.com/c-zhou/yahs 1084 
 1085 
samtools 1086 
https://github.com/samtools/ 1087 
 1088 
Produce sorted bam file - AJ.bam 1089 
/nfs/users/nfs_z/zn1/src/scaffHiC/src/scaff-bin/bwa-mem2 mem -t 54 -5SPM GRCH38.fasta 1090 
/lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/GM24385.AJ.R1.fastq.gz 1091 
/lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/GM24385.AJ.R2.fastq.gz > align-AJ.sam 1092 
samtools view -@ 50 -bS align-AJ.sam > Sorted_names.bam 1093 
samtools fixmate -@ 50 -m Sorted_names.bam Fixmate.bam > try.out 1094 
samtools sort -@ 50 -o Sorted.bam Fixmate.bam > try.out 1095 
rm -rf align-AJ.sam Sorted_names.bam Fixmate.bam 1096 
samtools markdup -@ 50 -r -s Sorted.bam Dupmarked.bam > try.out 1097 
mv Dupmarked.bam AJ.bam 1098 
 1099 
Coverage analysis 1100 
samtools depth Sorted.bam | egrep _0 | awk '($2%100==0){print $0}' > depth.dat 1101 
sort -n -k 3 depth.dat | awk '{print $1,$3}' > depth-raw.dat 1102 
/nfs/users/nfs_z/zn1/src/scaffHiC/src/scaff-bin/distribution_hic-coverage depth-raw.dat | awk '{print $2,$3}' > depth-freq.dat 1103 
 1104 
Hi-C contact map 1105 
/nfs/users/nfs_z/zn1/src/scaffHiC/src/scaffhic -nodes 54 -depth 50 -score 200 -map arima-AJ.map -plot arima-AJ.png -length 1106 
500000 -file 0 -fq1 /lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/GM24385.AJ.R1.fastq.gz -fq2 1107 
/lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/GM24385.AJ.R2.fastq.gz GRCH38.fasta aj-1108 
arima.fasta > try.out 1109 
 1110 
Here we obtained arima-AJ.map and arima-AJ.png 1111 
You may use PretextView to view the Hi-C map: 1112 
https://github.com/wtsi-hpag/PretextView 1113 
 1114 
Genome assembly 1115 
 1116 
Contigs 1117 
~zn1/src/hifiasm/hifiasm -o hg002-hifiasm -t 80 HG002-HiFi-all.fastq.gz > try.out 1118 
egrep "^S" hg002-hifiasm.p_ctg.gfa | awk '{print ">"$2"\n"$3}' > hg002-hifiasm.fasta 1119 
 1120 
Purge_dups 1121 
/nfs/users/nfs_z/zn1/src/minimap2/minimap2-2.17_x64-linux/minimap2 -t 30 -xmap-pb hg002-hifiasm.fasta HG002-HiFi-1122 
all.fastq.gz | gzip -c - > align.paf.gz 1123 
/nfs/users/nfs_z/zn1/src/purge_dups/bin/pbcstat align.paf.gz 1124 
/nfs/users/nfs_z/zn1/src/purge_dups/bin/calcuts PB.stat > cutoffs 1125 
/nfs/users/nfs_z/zn1/src/purge_dups/bin/split_fa hg002-hifiasm.fasta > Human.split 1126 
/nfs/users/nfs_z/zn1/src/minimap2/minimap2-2.17_x64-linux/minimap2 -t 20 -xasm5 -DP Human.split Human.split | gzip -c - > 1127 
split.self.paf.gz 1128 
/nfs/users/nfs_z/zn1/src/purge_dups/bin/purge_dups -2 -T cutoffs -c PB.base.cov split.self.paf.gz > dups.bed 1129 
/nfs/users/nfs_z/zn1/src/purge_dups/bin/get_seqs dups.bed hg002-hifiasm.fasta > purged.fa 2> hap.fa 1130 
 1131 
Scaffolding 1132 
/nfs/users/nfs_z/zn1/src/scaffHiC/src/scaff-bin/bwa-mem2 mem -t 54 -5SPM purged.fa 1133 
/lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/GM24385.AJ.R1.fastq.gz 1134 
/lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/GM24385.AJ.R2.fastq.gz > align-purge.sam 1135 
samtools view -@ 50 -bS align-purge.sam > Sorted_names.bam 1136 

https://github.com/wtsi-hpag/scaffHiC


samtools fixmate -@ 50 -m Sorted_names.bam Fixmate.bam > try.out 1137 
samtools sort -@ 50 -o Sorted.bam Fixmate.bam > try.out 1138 
rm -rf align-AJ.sam Sorted_names.bam Fixmate.bam 1139 
samtools markdup -@ 50 -r -s Sorted.bam Dupmarked.bam > try.out 1140 
mv Dupmarked.bam AJ-scaff.bam 1141 
 1142 
~zn1/src/yahs/yahs -o HG002-yahs.fa purged.fa AJ-scaff.bam > try.out 1143 
 1144 
Hi-C map for scaffolded assembly 1145 
/nfs/users/nfs_z/zn1/src/scaffHiC/src/scaffhic -nodes 54 -depth 50 -score 200 -map yahs-final-AJ.map -plot yahs-final-AJ.png -1146 
length 500000 -file 0 -fq1 1147 
/lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/jz1/GM24385.AJ.R1.fastq.gz -fq2 1148 
/lustre/scratch117/sciops/team117/hpag/zn1/project/HiC/arima/human/QC/jz1/GM24385.AJ.R2.fastq.gz HG002-yahs.fa arima-1149 
AJ.fasta > try.out 1150 
 1151 
Here we have yahs-final-AJ.map and yahs-final-AJ.png. 1152 
 1153 


