
[21:54 21/10/2009 Bioinformatics-btp394.tex] Page: 2865 2865–2871

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 21 2009, pages 2865–2871
doi:10.1093/bioinformatics/btp394

Genome analysis

Pindel: a pattern growth approach to detect break points of large
deletions and medium sized insertions from paired-end short
reads
Kai Ye1,2,∗, Marcel H. Schulz1,3, Quan Long4, Rolf Apweiler1 and Zemin Ning4,∗
1EMBL Outstation European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK,
2Departments of Molecular Epidemiology, Medical Statistics and Bioinformatics, Leiden University Medical Center,
Leiden, The Netherlands, 3Max Planck Institute for Molecular Genetics and International Max Planck Research
School for Computational Biology and Scientific Computing, Berlin, Germany and 4The Wellcome Trust Sanger
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

Received on April 27, 2009; revised on June 20, 2009; accepted on June 21, 2009

Advance Access publication June 26, 2009

Associate Editor: Alfonso Valencia

ABSTRACT

Motivation: There is a strong demand in the genomic community
to develop effective algorithms to reliably identify genomic variants.
Indel detection using next-gen data is difficult and identification of
long structural variations is extremely challenging.
Results: We present Pindel, a pattern growth approach, to detect
breakpoints of large deletions and medium-sized insertions from
paired-end short reads. We use both simulated reads and real data
to demonstrate the efficiency of the computer program and accuracy
of the results.
Availability: The binary code and a short user manual can be freely
downloaded from http://www.ebi.ac.uk/∼kye/pindel/.
Contact: k.ye@lumc.nl; zn1@sanger.ac.uk

1 INTRODUCTION
Amajor part of the genetic difference between individuals is encoded
in the form of structural variations, such as insertions, deletions and
duplications. In previous studies, hundreds of large-scale structural
variants have been identified using arrayCGH (Iafrate et al., 2004;
Sebat et al., 2004). Polymorphic transposon insertions (Bennett
et al., 2004) and other short indel polymorphisms (Mills et al.,
2006) have been discovered using capillary sequencing reads.
Clone-end capillary sequencing provided a means to interrogate the
intermediate size structural variations and particularly, the method
is able to find relatively large insertion events (Kidd et al., 2008).
Whole genome complete sequencing created a more detailed catalog
of structural variations for single human individuals (Levy et al.,
2007; Wheeler et al., 2008). For example, the de novo assembly
of the Venter genome played an essential role in detecting long
insertions, deletions and structural rearrangements.

Recent efforts on variant detection have been fueled up by next-
gen high throughput sequencing. Using the Illumina platform for a
complete sequencing of a human individual, Bentley et al. (2008)
reported ∼4-million SNPs and ∼0.4-million short indels of size
1–16 bp. However, large indel events were not extensively studied

∗To whom correspondence should be addressed.

by the authors. For the next-gen sequencing data, there are a number
of ways to detect long variants, notably assembly (complete de novo
or using unmapped reads only), read splitting, read coverage depth
analysis, inconsistencies of insert sizes through paired-end mapping,
etc. Among these, de novo assembly from short reads perhaps
offers the best chance for long indels and structural rearrangements.
There are a number of short read assemblers based on de Bruijn
graphs. However, assembly of short read data is most successful
when applied to small genoms like bacterial genomes (Chaisson and
Pevzner, 2008; Zerbino and Birney, 2008). Above the eukaryotic
level, it would be problematic due to repetitive genome regions.
Given the current read length of 35–75 bp in the next-gen sequencing
platforms, lack of high quality de novo assembly looks like to
continue in the near future. Therefore, the need is eminent in the
genomic community to develop read mapping related algorithms in
order to reliably identify structural variants.

In this article, we present Pindel, a method that uses pattern growth
algorithm to identify the break points of large deletions (1 bp–10 kb)
and medium sized insertions (1–20 bp) from 36 bp paired-end short
reads. We will start with introducing pattern growth for string
matching. Then Pindel, the procedure of computing medium sized
insertions and large deletions from paired-end short reads, will be
illustrated. We test our Pindel program with simulated paired-end
short reads on human chromosome X. We also report the results of
Pindel using the whole human genome data of NA18507, sequenced
on an Illumina platform. Finally Runtime and peak memory usage
are analyzed to demonstrate the efficiency of Pindel.

2 METHODS

2.1 Pattern growth for exact string matching
In our previous study, we followed the principles of the pattern growth data
structure as presented in PrefixSpan, a sequential pattern mining algorithm
(Pei et al., 2004), and introduced various constraints during the data mining
process to mine biological meaningful patterns from unaligned protein
sequences (Ye et al., 2007). Since the data structure of pattern growth and its
extensions to the analysis of protein sequences have been well documented
before, here we only briefly introduce how to use pattern growth to find

© The Author(s) 2009. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

 at W
ellcom

e T
rust G

enom
e C

am
pus on February 1, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://www.ebi.ac
http://creativecommons.org/licenses/
http://bioinformatics.oxfordjournals.org/


[21:54 21/10/2009 Bioinformatics-btp394.tex] Page: 2866 2865–2871

K.Ye et al.

minimum and maximum unique substrings of a given pattern against a
sequence database. In our particular application those unique substrings must
start from either the leftmost or the rightmost base of pattern P.

For simplicity, we only describe the procedure of finding minimum and
maximum unique substrings starting from the leftmost base of the pattern P.
The inputs of the algorithm are a dataset S which consists of a series of
non-empty sequences of the alphabet {A, C, G, T}, a pattern P to search for
the locations of its minimum and maximum substrings. The output of the
algorithm consists of all substrings (and their locations) starting from the
leftmost base of P that appear exactly once in S. The algorithm works as
follows. Here a is a substring that starting from the leftmost base of P and
Sa is the so-called projected database that contains all sequences that contain
the substring a, where the last element of each occurrence of a is marked
(the so-called a-locations). The computation of Sa′ from Sa requires, for each
a-location, the check whether or not the base on its right-hand side equals the
newly appended item b. In case of equality this gives an a′-location in Sa′ .
Sequences without any a′-location are removed from the projected database.
The main call is unique (�, S�), where � is the empty substring; note that
each base in database S� is a �-location, including the position before each
sequence. This call creates a projected database that marks all occurrences
of the first base b of pattern P.

Let us use a simple example to explain the procedure above. Suppose we
define a database S of genome sequence as ‘ATCAAGTATGCTTAGC’ and
the pattern P is ‘ATGCA’. In the first step, we scan the whole database
for ‘A’, the first base of pattern P. The locations of ‘A’ (red ‘A’ in
‘ATCAAGTATGCTTAGC’) are stored in a projected database of ‘A’. In
the second step, we look for ‘T’ as it is the second base in pattern P at the
right side of ‘A’s identified previously. The projected database for ‘AT’ then
only contains two locations (‘ATCAAGTATGCTTAGC’). When we search
for the third base ‘G’ of pattern P at the right sides of ‘AT’, we found that
‘ATG’ appears exactly once in the database S (‘ATCAAGTATGCTTAGC’).
Thus we know that ‘ATG’ is the minimum unique substring of pattern P in
the database S. After we examine the fourth and fifth base of pattern P, we
notice that ‘ATGC’ is also unique in the database S but ‘ATGCA’ isn’t. In
this case we know that ‘ATGC’ is the maximum unique substring of pattern
P in this particular database S.

2.2 General procedure of Pindel
In the Pindel program, we aim to compute the precise break points as well
as the fragments inserted or deleted compared to the reference genome from
paired-end reads. In the preprocessing step, we first use SSAHA2 (Ning
et al., 2001) to map all the reads to the reference genome. Then the mapping
results are examined to keep those paired reads that only one end can be
mapped. For each of those read pairs, the mapped end must be uniquely
located in the genome with no mismatch bases while the other end cannot be
mapped to anywhere in the genome under a given threshold alignment score
(s = 20 for ∼36 bp reads). For each of those pairs, our Pindel program uses
the mapped end to determine the anchor point on the reference genome and
the direction of the unmapped read. Knowing the anchor point, the direction
to search for the unmapped read and the user defined Maximum Deletion
Size (Max_D_Size) parameter, a sub-region in the reference genome can
be located, where Pindel will break the unmapped read into 2 (deletion) or
3 (short insertion) fragments and map the two terminal fragment separately.

2.3 Detecting large deletions
When we map paired-end reads to the reference genome, for the majority
of the reads, both ends can be mapped to the reference genome. However,
a small portion of them might have only one end mapped to the reference
genome. One of the possibilities is that the unmapped read mate spans the
break point of a deletion event in the test sample compared to the reference
genome as shown in Figure 1(a). Thus, those unmapped reads actually carry
the information about the precise break points of the deletion event. If we
can find a proper position to split the read into two fragments, which can

(a)

(b)

Fig. 1. Detecting deletion events. (a) When mapping paired-end reads to
the reference genome, some reads may not be mapped even allowing a few
mismatches because they are just across the break points of deletion events.
If we can find a proper position to break the read into two fragments and
map them separately, we will be able to compute the exact break points
and the fragment deleted compared to the reference. If find more supporting
evidences can be found, the possibility of the deletion event will be higher
in the test sample. For simplicity, we only depicted one mapped read (green
arrow); (b) The procedure to break the unmapped read into two parts at
appropriate position and mapped them separately to the reference genome.
The location and direction of the mapped read (green) define the local region
to break the unmapped read into two fragments and map them separately. The
3′ end of the mapped read is defined as anchor point. Then pattern growth
is used to search for minimum and maximum unique substrings from the
3′ end of unmapped reads within the range of two times of insert size starting
from the anchor point. Using pattern growth again to search for minimum
and maximum unique substrings from the 5′ of unmapped read within the
range of read length + user defined maximum deletion size starting from
the already mapped 3′ end of the unmapped read. The computed minimum
and maximum substrings from both 3′ and 5′ are examined to see whether a
complete unmapped read can be assembled. All possible solutions are stored
in a database for sorting according to the break point coordinates. A deletion
event is reported if at least two reads support it.

be mapped back to the reference separately, we will be able to compute the
exact positions of the break points and thus the fragment deleted compared
to the reference. If we collect multiple reads that support the same incidence,
we will be more confident about the deletion event in the test sample.

Although for short reads, half of a read length might be too short to be
mapped uniquely in a whole genome scale as large as human’s, the location
and the direction of the mapped read reduces the search space dramatically.
As shown in Figure 1b, when we have one read mapped (the anchor point) but
the other one is not mappable, we only need to consider the local region at one
side of the anchor point. The computational procedure for each unmapped
read is described as following (Fig. 1b):

(1) Read in the location and the direction of the mapped read from the
mapping result obtained in the preprocessing step;

(2) Define the 3′ end of the mapped read as anchor point;

2866

 at W
ellcom

e T
rust G

enom
e C

am
pus on February 1, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[21:54 21/10/2009 Bioinformatics-btp394.tex] Page: 2867 2865–2871

Pindel: detecting break points of indels with pattern growth

(3) Use pattern growth algorithm to search for minimum and maximum
unique substrings from the 3′ end of the unmapped read within the
range of two times of the insert size from the anchor point;

(4) Use pattern growth to search for minimum and maximum unique
substrings from the 5′ end of the unmapped read within the range of
read length + Max_D_Size starting from the already mapped 3′ end of
the unmapped read obtained in step 3;

(5) Check whether a complete unmapped read can be reconstructed
combining the unique substrings from 5′ and 3′ ends found in steps
3 and 4. If yes, store it in the database U. Note that exact matches
and complete reconstruction of the unmapped read are required so
that neither gap nor substitution is allowed.

After processing all unmapped reads, sort the database U according to the
breakpoint coordinates in the reference and output every deletion event
supported by at least two reads.

User has to specify the parameter Max_D_Size and also change the
minimum lengths for unique substrings reported in step 3 and 4, denoted
as Min_C and Min_F, respectively.

2.4 Detecting medium sized insertions
In Section 2.3, we explain how to compute the precise break points of deletion
events and the deletion size could be rather large as long as we find unique
matches for the two parts of the unmapped read. It is, however, difficult to
infer the fragment for large insertions directly from the read sequence. In this
case we aim to compute the precise break points and the fragment inserted
in the medium sized range (<=20 bases for 36 bp reads). The computational
procedure is very similar to that used for searching deletions. The only
difference is in step 4 where the search range for the unique occurrence of
minimum and maximum unique substrings from the 5′ end of the unmapped
read is read length minus one. In this case, we certainly cannot reconstruct
the whole read and the extra bases are an inserted fragment compared to the
reference genome as shown in Fig. 2.

Fig. 2. Detecting short insertion events. The procedure to split the unmapped
read into three parts at appropriate position and mapped the terminal two
separately to the reference genome. The location and direction of the mapped
read (green) define the local region to split the unmapped read. The 3′ end
of the mapped read is defined as anchor point. Then pattern growth is used
to search for minimum and maximum unique substrings from the 3′ end
of unmapped reads within the range of two times of insert size starting
from the anchor point. Using pattern growth again to search for minimum
and maximum unique substrings from the 5′ of unmapped read within the
range of read length – 1, starting from the already mapped 3′ end of the
unmapped read. The computed minimum and maximum substrings from
both 3′ and 5′ are examined to see whether they are adjacent to each other.
The middle fragment is the inserted fragment. All possible solutions are
stored in a database for sorting according to the break point coordinates. An
insertion event is reported if at least two reads support it.

2.5 Simulated data
2.5.1 Simulating paired-end reads on human X chromosome In
order to evaluate our Pindel program, we first simulated indels on
human X chromosome and examined how well Pindel can detect
those simulated indels in the presence of SNPs and sequencing
errors. The sequence of human X chromosome was obtained at
ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/Assembled_chromosomes/.
We put 20 instances for each indel length we have chosen. The insertion
sizes vary from 1–20 bp while the deletion sizes range from 1–10, 100, 1,
10, 100 kb to 1 Mb. SNPs are simulated at a rate of 0.001 and sequencing
error rate is set to 0.005. Using the above setting, we simulated 30×
coverage of 36 bp paired-end short reads with an average insert size of 200.
The indels are randomly placed and their locations are recorded to facilitate
comparison.

2.6 Real data
Recently the genome of a male Yoruba from Ibadan, Nigeria
(YRI, sample NA18507), was sequenced (Bentley et al., 2008). The
∼4-billion paired-end reads (∼40-fold depth, 135 Gb of sequence) were
obtained from the NCBI short-read archive, accession SRA000271
(ftp://ftp.ncbi.nlm.nih.gov/pub.TraceDB/ShortRead/SRA000271). The list
of 378 287 short indels (1–16 bp) in their study was kindly provided by
Illumina.

3 RESULTS

3.1 Implementation of Pindel
The Pindel program was implemented in C++ to identify break
points of medium-sized insertion and large deletions using the
principle of pattern growth. Currently no parallelization has been
implemented in Pindel so that it only runs on a single CPU. The
input for Pindel consists of the reference genome sequence and a
file of one-end-mapped read pairs. The output contains information
about each indel event at the base level. In Figure 3, for example,
a deletion event (‘D’ one the start of the first line) as reported by
Pindel is depicted. The indel size and its break point coordinates
on the reference genome are given. There are 15 reads supporting
such an event. For 9 out of 15 reads, their mapped partners are
located upstream of the deletion event (+ sign) while six are located
downstream (- sign). The coordinates of mapped reads are given as
well. Currently we report an indel event if there are at least two
reads supporting it.

3.2 Simulation on human chromosome X
In order to evaluate performance of Pindel, we first examine how
well it can retrieve randomly placed indels on human chromosome

Fig. 3. An example output of Pindel. The type and size of deletion are
specified first (D 321). Then the chromosome ID, coordinates of the break
points and the number of reads supporting every event are given. The
mapping directions of the mapped reads and their 3′ coordinates on the
reference are reported for each supporting read.

2867

 at W
ellcom

e T
rust G

enom
e C

am
pus on February 1, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/Assembled_chromosomes/
ftp://ftp.ncbi.nlm.nih.gov/pub.TraceDB/ShortRead/SRA000271
http://bioinformatics.oxfordjournals.org/


[21:54 21/10/2009 Bioinformatics-btp394.tex] Page: 2868 2865–2871

K.Ye et al.

(a)

(d) (e) (f)

(i)(h)(g)

(b) (c)

Fig. 4. Simulation of paired-end reads from human chromosome X. (a–f) True positive rates per each deletion size are displayed in the presence of sequencing
errors and SNPs when Max_D_Size is increased from 10 to 1 000 000 bp. The impact of sequencing errors and/or SNPs on the overall true positive rates
(g) and false discovery rates (h) when Max_D_Size is set to different values from 10 to 1 000 000. (i) The impact of sequencing errors and/or SNPs on the
true positive rates for detecting medium sized insertions from size 1 to –20 bp.

X in the presence of SNPs and sequencing errors. For deletion, user
must specify the maximum size of deletion events (Max_D_size).
As shown in Figure 4, when we increase Max_D_size from 10 bp to
100 kb, we are able to recover about 80% of deletions (Fig. 4a–e)
with <2% false discovery rate (Fig. 4h). It should be noted that
the maximum size cannot be too high as this significantly increases
the false positives as well as decreases the rate of true positives
(Fig. 4f and h), especially when the maximum size reaches 1 Mb.
We also investigated the effect of sequencing errors and SNPs on
the performance of detecting deletions by Pindel (Fig. 4g and h)
and we found that data with SNPs and/or sequencing errors only
slightly affects the rate of false negatives and has little effects on
accuracy of variant detection due to the stringent filtering of read
alignment in the preprocessing step, i.e. no mismatch is allowed. As
for insertions, we can correctly detect around 80% of the insertions

of 1–16 bases in the presence of SNPs and sequencing errors. For
36 bp paired-end reads, the probability for Pindel to detect insertion
events longer than 16 bp is decreasing as the size of insertion events
goes up (Fig. 4i).

3.3 Real data (NA18507)
The newly sequenced data (Bentley et al., 2008) of a male Yoruba
from Ibadan, Nigeria (YRI, sample NA18507), provides us a
chance to further examine Pindel with high depth, high quality and
most importantly real paired-end read data. After preprocessing the
paired-end reads with SSAHA2, we obtained 56 161 333 pairs of
reads which only have one end mapped uniquely to the human
reference while the other end couldn’t be mapped. In order to
compare the prediction of Pindel with the short indel calling

2868

 at W
ellcom

e T
rust G

enom
e C

am
pus on February 1, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[21:54 21/10/2009 Bioinformatics-btp394.tex] Page: 2869 2865–2871

Pindel: detecting break points of indels with pattern growth

Fig. 5. Plots of deletion size distribution for NA18507 from 1 to 10 000 bp. (a) The frequency per each deletion size from 1 to 10 000 bp. Adjacent dots are
connected. There is a peak around 300 bp, which may contain hundreds of putative SINEs. (b) Sum of frequencies for each 20 bases is plotted. The peaks for
putative SINEs and LINEs are visible.

(1–16 bp, indels_NA18507) published together with the sequencing
data, we first constrained our Pindel to pick up indels of length
1–16 bp. As a result, Pindel predicted 146 843 deletions and 142 908
insertions. We found that 133 974 deletions (91.2% of 146 843)
and 124 559 insertions (87.2% of 142 908) are in the indel list of
Bentley et al. If we take the prediction of Bentley et al. as true
positive, the overall false negative rates of Pindel for deletions and
insertions of length 1–16 bp will be 31.6%. Tables of comparison
between predictions of Bentley et al. and Pindel are available at
http://www.ebi.ac.uk/∼kye/pindel/.

Since our Pindel is able to identify deletions of size up to 10 kb
from 36 bp paired-end reads, we removed the constraints on the indel
size and rerun Pindel. The result was compared with the database
of genomic variants [DGV, http://projects.tcag.ca/variation/, (Iafrate
et al., 2004)]. For the range of 100 bp–1 kb, Pindel predicted 1399
deletions, 949 of which (67.8%) were listed in DGV. In the range
of 1—10 kb, Pindel predicted 1138 deletions, 494 of which (43.4%)
were listed in DGV.

The deletion size distribution for NA18507 from 1 to 10 000 bp
is shown in Figure 5a, where the frequency per each deletion size
is depicted as a dot while adjacent dots are connected to illustrate
the trends. There is a peak around 300 bp, which contain hundreds
of putative SINEs. In Figure 5b, when we sum up the frequencies
for every 20 bases, there is an additional peak at around 6 k which
most likely corresponds to putative LINEs.

We further characterized the 665 deletion events, whose sizes
range from 300 to 350 bp. Six hundred thirty seven of 665 deletion
events (95.8%) were reported as SINEs by RepeatMasker and the
majority of those 637 events were flagged as potential members of
the AluY family.

3.4 Runtime and memory usage for processing data of
NA18507

The Pindel program is efficient in time and memory. In order
to reduce memory requirement, each time Pindel loads one

chromosome into memory and scan the entire read alignment file,
examining reads associated with the current chromosome. After
Pindel processes all the reads, it outputs the results and then frees
memory for the next chromosome. As shown in Figure 6a, when
Max_D_Size is smaller than 1 k, the most time-consuming step is
loading the reference sequence and scanning the read file. When
we set Max_D_Size to 10 k, it took Pindel only 16 125 s (<4.5 h) to
process the complete data of NA18507 on a single CPU.

Because Pindel processes one chromosome at a time, the
maximum memory consumption is well controlled. As shown in
Figure 6b, when we increase Max_D_Size from 10 bp to 10 kb, the
peak memory usage only increases slightly from 1429 to 1542 MB
simply because more indel events are found and stored in memory
before writing back to the hard disk.

4 DISCUSSION

4.1 Pattern growth: memory and speed
Currently major genome-wide sequence analysis programs use
either hash-tables or suffix tree related data structure to index
sequences to allow efficient query (Ning et al., 2001; Schulz et al.,
2008). Indexing entire genomes as large as the human one requires
significant amount of computer memory. Since our Pindel program
only processes and breaks and unmapped reads in the defined local
regions according to the position of the mapped anchor read, using
pattern growth to directly search for unique minimum and maximum
unique substrings is apparently more memory efficient than indexing
the entire genome with hash-tables or suffix trees (Fig. 6b). In
our applications, the pattern growth method is very efficient in
searching for deletions up to 10 kb long, taking only 4.5 h on a
single CPU to process data derived from ∼40× coverage paired-end
reads of human genome. It should be noted that Pindel does need
read mapping and this process is the main bulk of computational
CPU time and memory usage. We are also working on the adaption
of the SAM (http://samtools.sourceforge.net) format so that Pindel

2869

 at W
ellcom

e T
rust G

enom
e C

am
pus on February 1, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://www.ebi.ac
http://projects.tcag.ca/variation/
http://samtools.sourceforge.net
http://bioinformatics.oxfordjournals.org/


[21:54 21/10/2009 Bioinformatics-btp394.tex] Page: 2870 2865–2871

K.Ye et al.

Fig. 6. Runtime and memory consumption for Pindel applied to the NA18507 data on a single CPU for mining indels with different Max_D_Size (10 bp,
100 bp, 1 kb and 10 kb). (a) The user runtime for Pindel is divided into three categories: (i) loading the reference genome and the reads into memory. (ii)
Break unmapped reads and map them separately using pattern growth. (iii) Sort break points according to coordinates and write the results on hard disk.
(b) Maximum memory consumption for Pindel to process the NA18507 data with different Max_D_Size (10 bp, 100 bp, 1 kb and 10 kb).

scans SAM or BAM files for variants regardless of the alignment
tools.

4.2 Sensitivity and specificity
As one can see in the results from both simulation and real data,
Pindel misses a fraction of true positives for several reasons. First
of all, repeats in the reference genome may prevent unique mapping
of anchor points. Pindel also requires unique exact occurrence of the
terminal fragments of unmapped reads within a certain region related
to the anchor point. Whenever missing anchor points or repeats
occurring around the variant, Pindel will not report this event at
all. The probability of finding a random substring that is identical to
one of the terminal fragments increases as we enlarge the parameter
Max_D_Size (Fig. 4a–g).

In the current version of Pindel, we only consider perfect matching
and mismatch is not allowed. As a consequence, SNPs or sequencing
base errors in the regions of anchor or indel points may lead to the
miss of true positives because there might be insufficient supporting
reads. We are investigating inexact matching with pattern growth to
overcome the issue of SNPs and sequencing errors.

Throughout this manuscript we have used a fixed cutoff value for
the number of supporting reads >=2, for the detection of deletions
and insertions from paired-end short read data. Obviously this is a
simplification as the actual parameters like insertion or deletion size,
and the number or paired-end reads are not taken into account. For
example in the simulation on chromosome X we have seen a drop in
true positive rate for searching of large deletions, mostly due to the
accumulated number of random matches. It was very surprising to us
that the simple cutoff we used showed such promising results over
a broad range of search parameters. Clearly, a fixed cutoff will be
inappropriate once we introduce mismatches in the string-matching
step as every mismatch may increase the number of random matches
by orders of magnitudes dependent on read length. Therefore, we
are currently investigating a statistical score that captures random
matches due to different search parameters, inexact matching, and
the total number of reads.

5 CONCLUSIONS
In this study, we present Pindel, a computational approach to detect
breakpoints of large deletions and medium sized insertions from
paired-end short reads. As far as we know, Pindel is one of the
first programs to compute deletion events as large as 10 kb with
base level precision from 36 bp paired-end short reads. Due to its
high performance in sensitivity, specificity and efficiency in memory
and speed, Pindel has been proved to be a promising approach to
address the structural variations between individuals from next-gen
high throughput sequencing.

ACKNOWLEDGEMENTS
The authors thank E. Birney, M. Fritz, M. Schuster, K. Walter and
Y. Zhang for comments.

Funding: NGI/EBI fellowship 050-72-436 from Netherlands
Genomics Initiative.

Conflict of Interest: none declared.

REFERENCES
Bennett,E.A. et al. (2004) Natural genetic variation caused by transposable elements in

humans. Genetics, 168, 933–951.
Bentley,D.R. et al. (2008) Accurate whole human genome sequencing using reversible

terminator chemistry. Nature, 456, 53–59.
Chaisson,M.J. and Pevzner,P.A. (2008) Short read fragment assembly of bacterial

genomes. Genome Res., 18, 324–330.
Iafrate,A.J. et al. (2004) Detection of large-scale variation in the human genome. Nat.

Genet., 36, 949–951.
Kidd,J.M. et al. (2008) Mapping and sequencing of structural variation from eight

human genomes. Nature, 453, 56–64.
Levy,S. et al. (2007) The diploid genome sequence of an individual human. PLoS Biol.,

5, e254.
Mills,R.E. et al. (2006) An initial map of insertion and deletion (INDEL) variation in

the human genome. Genome Res., 16, 1182–1190.
Ning,Z. et al. (2001) SSAHA: a fast search method for large DNA databases. Genome

Res., 11, 1725–1729.
Pei,J. et al. (2004) Mining sequential patterns by pattern-growth: The prefixspan

approach. IEEE Trans. Knowl. Data Eng., 16, 1424–1440.

2870

 at W
ellcom

e T
rust G

enom
e C

am
pus on February 1, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


[21:54 21/10/2009 Bioinformatics-btp394.tex] Page: 2871 2865–2871

Pindel: detecting break points of indels with pattern growth

Schulz,M.H. et al. (2008) The generalised k-truncated suffix tree for time-and space-
efficient searches in multiple DNA or protein sequences. Int. J. Bioinform. Res.
Appl., 4, 81–95.

Sebat,J. et al. (2004) Large-scale copy number polymorphism in the human genome.
Science, 305, 525–528.

Smit,A.F.A. et al. (2008) The complete genome of an individual by massively parallel
DNA sequencing. Nature, 452, 872–876.

Ye,K. et al. (2007) An efficient, versatile and scalable pattern growth approach
to mine frequent patterns in unaligned protein sequences. Bioinformatics, 23,
687–693.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res., 18, 821–829.

2871

 at W
ellcom

e T
rust G

enom
e C

am
pus on February 1, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/

