
Sequence Alignment and Genome Assembly

Zemin Ning

The Wellcome Trust Sanger Institute

Outline of the Talk:

 Global and Local Alignment

 Statistical significance of alignment

 Alignment method

Biological Motivation

Why We Need Sequence Alignment

 Inference of Homology

– Two genes are homologous if they share a
common evolutionary history.

– Evolutionary history can tell us a lot about
properties of a given gene

– Homology can be inferred from similarity
between the genes

 Searching for Proteins with same or
similar functions

Sequence Alignment

Input: two sequences S1, S2 over the same alphabet
Output: two sequences S’1, S’2 of equal length

(S’1, S’2 are S1, S2 with possibly additional gaps)

Example:
 S1= GCGCATGGATTGAGCGA

 S2= TGCGCCATTGATGACC

 A possible alignment:
S’1= -GCGC-ATGGATTGAGCGA

S’2= TGCGCCATTGAT-GACC--

Goal: How similar are two sequences S1 and S2

Global Alignment:

Input: two sequences S1, S2 over the same alphabet
Output: two sequences S’1, S’2 of equal length

(S’1, S’2 are substrings of S1, S2 with possibly additional gaps)

Example:
 S1= GCGCATGGATTGAGCGA

 S2= TGCGCCATTGATGACC

 A possible alignment:
S’1= ATTGA-G

S’2= ATTGATG

Goal: Find the pair of substrings in two input

sequences which have the highest similarity

Local Alignment:

Sequence Alignment (cont)

Global vs. Local Alignment

 The Global Alignment Problem tries to find

the longest path between vertices (0,0)

and (n,m) in the edit graph.

 The Local Alignment Problem tries to find

the longest path among paths between

arbitrary vertices (i,j) and (i’, j’) in the edit

graph.

Global vs. Local Alignment (cont’d)

• Global Alignment

• Local Alignment—betten alignment to find

conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Global alignment

Local alignment

Compute a “mini”

Global Alignment to

get Local

Sequence 1

Sequence 2

We need to know how to evaluate the significance of the

alignment. There are two scenarios:

First, the alignment indicates an evolutionary relationship

between the sequences.

Second, the alignment is a chance occurrence. What answer is

correct?

Here, the statistics are important to estimate of probability

that the given alignment score might occur by chance.

Statistic Significance of Alignment

• E value (E) of an alignment score is the expected number of unrelated

sequences in a database that would have a score at least as good.

• Low E-values suggest that sequences are

homologous.

If E value ≤ 0.02 sequence probably homologous

If E value ≤ 1 homology cannot be ruled out

If E value > 1 a match just by chance

• Statistical significance depends on both the size of

the alignments and the size of the sequence database
– Important consideration for comparing results across different searches

– E-value increases as database gets bigger

– E-value decreases as alignments get longer

E value Measuring Alignment Significance

E Value (E)

P Value (P)

Another criteria of the Alignment Significance is the

probability that an alignment with this score could have arisen

by chance - p-value:

E-value(S) = n • p-value(S),

Here n is the number of sequences in the database, S.

The lower the p-value, the more likely it is that the alignment

score is not by chance but was caused by alignment procedure.

The E-value is not a probability; it’s an expected value, i.e.

the expected outcome.

For example, p = .01 means there is a 1 in 100 chance the

result occurred by chance.

• Dot matrix analysis

• The dynamic programming (DP) algorithm

• Needleman-Wunsch Algorithm

• Smith-Waterman Algorithm

• Suffix tree

• Hash table based algorithm

• Short read alignment tools

Methods of DNA Sequence Alignment

• A dot matrix analysis is a method for comparing two sequences

to look for possible alignment (Gibbs and McIntyre 1970)

• One sequence (A) is listed across the top of the matrix and the

other (B) is listed down the left side

• Starting from the first character in B, one moves across the page

keeping in the first row and placing a dot in many column where

the character in A is the same

• The process is continued until all possible comparisons between

A and B are made

• Any region of similarity is revealed by a diagonal row of dots

• Isolated dots not on diagonal represent random matches

Dot Matrix Analysis

Dot view – Indels

Dot view – Tandem repeats

The Needleman-Wunsch Algorithm

x = AGTA m = 1

y = ATA s = -1

d = -1

A G T A

0 -1 -2 -3 -4

A -1 1 0 -1 -2

T -2 0 0 1 0

A -3 -1 -1 0 2

F(i,j) i = 0 1 2 3 4

j = 0

1

2

3

Optimal Alignment:

F(4,3) = 2

AGTA

A - TA

Smith-Waterman Algorithm

 Only works effectively

when gap penalties are

used

 In example shown

– match = +1

– mismatch = -1/3

– gap = -1+1/3k (k=extent

of gap)

 Start with all cell values = 0

 Looks in subcolumn and

subrow shown and in direct

diagonal for a score that is

the highest when you take

alignment score or gap

penalty into account

C A G C C U C G C U U A G

A 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

A 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7

U 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7

G 0.0 0.0 1.0 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0

C 1.0 0.0 0.0 2.0 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3

C 1.0 0.7 0.0 1.0 3.0 1.7 ?

A

U

U

G

A

C

G

G

Hij=max{Hi-1, j-1 +s(ai,bj), max{Hi-k,j -Wk}, max{Hi, j-l -Wl}, 0}

Bounded Dynamic Programming

Initialization:

F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1…M

For j = max(1, i – k)…min(N, i+k)

F(i – 1, j – 1)+ s(xi, yj)

F(i, j) = max F(i, j – 1) – d, if j > i – k(N)

F(i – 1, j) – d, if j < i + k(N)

Termination: same

Easy to extend to the affine gap case

x1 ………………………… xM

y
1

…
…

…
…

…
…

…
…

…
…

y

N

k(N)

Mapping the string

ababc into a suffix tree.

ab

abc
c

b

c

abc c

root

Suffix Tree Example

ATGGCGTGCAGT

TGGCGTGCAGTC

GGCGTGCAGTCC

GCGTGCAGTCCA

CGTGCAGTCCAT

ATGGCGTGCAGTCCATGTTCGGATCA

Non-overlap hashing

W = N-k+1

(k = 12)

Non-overlap Hashing v Overlap Hashing

Overlap Hashing

W = N/k

ATGGGCAGATGT

CCATGTTCGGAT

CATTACGTAAGC

ATGGCGTGCAGTCCATGTTCGGATCATTACGTAAGC

Sequence Representation

Sequence S: (s1s2, …, si, …, sm) i =1,2, …, m

K-tuple: (sisi+1...si+k-1)

Using two binary digits for each base, we may have the following

representations:

“A” =00; “C” = 01; “G” = 10; “T” = 11

For any of the m/k no-overlapping k-tuples in the sequence, an

integer may be used to represent the k-tuple in a unique way




 
k

i

i

i EE
2

1

2k

max

1 1-2 with 2

where i = 0 or 1, depending on the value of the sequence base

and Emax is the maximum value of the possible E values.

E k-tuple Ni Indices and Offsets

0 AA 1 2, 19

1 AC 3 1, 9 2, 5 2, 11

2 AG 2 1, 15 2, 35

3 AT 2 2, 13 3, 3

4 CA 7 2, 3 2, 9 2, 21 2, 27 2, 33 3, 21 3, 23

5 CC 4 1, 21 2, 31 3, 5 3, 7

6 CG 1 1, 5

7 CT 6 1, 23 2, 39 2, 43 3, 13 3, 15 3, 17

8 GA 4 1, 3 1, 17 2, 15 2, 25

9 GC 0

10 GG 5 1, 25 1, 31 2, 17 2, 29 3, 1

11 GT 6 1, 1 1, 27 1, 29 2, 1 2, 37 3, 19

12 TA 1 3, 25

13 TC 6 1, 7 1, 11 1, 19 2, 23 2, 41 3, 11

14 TG 3 1, 13 2, 7 3, 9

15 TT

S1=(GTGACGTCACTCTGAGGATCCCCTGGGTGTGG)

S2=(GTCAACTGCAACATGAGGAACATCGACAGGCCCAAGGTCTTCCT)

S3=(GGATCCCCTGTCCTCTCTGTCACATA)

Hash Table: A 2-tuple hashing table of S1, S2 and S3

SSAHA2 = SSAHA + Cross_Match

SSAHA for matching seeds, cross_match for

sequence alignment.

SSAHA seeds

Edge

length

Sequence for cross_match

Edge

length

Mapping Score in ssaha2

Read mapping score is used to assess the repetitive feature of the read in

the genome. With a maximum mapping score 50, we have:

R = read length; Smax - maximum alignment score (smith-waterman) of

the hits on genome; Smax2 - second best alignment score of the hits on

genome; Say you have one read of 30 bases which has a few hits on the

genome: Best hit: exact match with Smax 30; Second best hit: one base

mismatch with Smax2 29. The mapping score for this read is Smap = 10;

Read

Reference

29 21 30 2514 27

50

))(/30(*10 2maxmax SSR
Smap




)50(

)50(





map

map

Sif

Sif

Genome Assembly using Solexa Short Reads
Algorithms and Applications

Outline of the Talk:

 Sequence Reconstruction and Euler Path

 Assembly strategy

 Sequence extension using read pairs, base qualities,

fuzzy kmers or longer reads

 Repeat junctions

 Gap5 - visual inspection for mis-assembly errors

Repeat Repeat Repeat

Sequence Repeat Graph

Sequences

Sequence Reconstruction

- Hamiltonian path approach

S=(ATGCAGGTCC)
ATG -> TGC -> GCA -> CAG -> AGG -> GGT -> GTC -> TCC

ATG AGG TGC TCC GTC GGT GCA CAG

Vertices: k-tuples from the spectrum shown in red (8);

Edges: overlapping k-tuples (7);

Path: visiting all vertices corresponding to the

sequence.

Sequence Reconstruction

- Euler path approach

Vertices: correspond to (k-I)-tuples (7);

Edges: correspond to k-tuples from the spectrum (8);

Path: visiting all EDGES corresponding to the sequence.

AT

GT CG

CA

GCTG

GG

ATGCGTGGCAATGGCGTGCA

ATG -> TGG -> GGC -> GCG -> CGT -> GTG -> TGC -> GCA

Assembly Strategy

Solexa read assembler to extend

short reads to 1-2 kb long reads

Genome/Chromosome

Capillary reads assembler

Phrap/Phusion

forward-reverse paired

reads

30-75 bp

known dist

~500 bp

30-75 bp

Kmer Extension & Walk

Base Quality to Filter Base Errors

Read Pairs in Repeat Junctions

Means to handle repeats:

- Base quality

- Read pair

- Fuzzy kmers

- Closely related reference

- 454 or Sanger reads

Kmer Extension & Repeat Junctions

Pileup of other reads like 454, Sanger etc

at a repeat junction

Consensus

Handling of Repeat Junctions

Handling of Single Base Variations

Solexa reads:

Number of reads: 6,000,000;

Finished genome size: ~4.8 Mbp;

Read length: 2x37 bp;

Estimated read coverage: ~92.5 X;

Insert size: 170/50-300 bp;

Assembly features: - contig stats

Solexa 454

Total number of contigs: 75; 390

Total bases of contigs: 4.80 Mbp 4.77 Mb

N50 contig size: 139,353 25,702

Largest contig: 395,600 62,040

Averaged contig size: 63,969 12,224

Contig coverage on genome: ~99.8 % 99.4%

Contig extension errors: 0

Mis-assembly errors: 0 4

Salmonella seftenberg Solexa

Assembly from Pair-End Reads

maq

ssaha2

maq

ssaha2

maq

ssaha2

maq

ssaha2

New Phusion Assembler

Solexa

Reads

Assembly

Reads Group

Data Process Long Insert Reads

Supercontig

Contigs

PRono

Fuzzypath

Phrap

Velvet

2x75 or 2x100

Solexa reads:

Number of reads: 557 Million;

Finished genome size: 3.0 GB;

Read length: 2x75bp;

Estimated read coverage: ~25X;

Insert size: 190/50-300 bp;

Number of reads clustered: 458 Million

Assembly features: - contig stats

Total number of contigs: 1,020,346;

Total bases of contigs: 2.713 Gb

N50 contig size: 8,344;

Largest contig: 107,613

Averaged contig size: 2,659;

Contig coverage over the genome: ~90 %;

Mis-assembly errors: ?

Genome Assembly – Normal Cell

Acknowledgements:

 Jim Mullikin

 Yong Gu

 Hannes Ponstingl

 James Bonfield

 Heng Li

 Daniel Zerbino (EBI)

 Tony Cox

 Richard Durbin

