Mapping short paired-end reads with SSAHA2

Hannes Ponstingl hp3@sanger.ac.uk

Sequence Assembly & Analysis Group

SSAHA2 mapping strategy

subject sequences (hashed k-tuples)

FASTQ file with query sequences

banded Smith-Waterman

Outline

- strategy:

1) identify potentially matching segments via short exact matches (k-tuple seeds)

2) align those segments to query by banded Smith-Waterman

- SSAHA k-tuple hashing
- memory requirements
- how potentially matching segments are detected
- how potentially matching segments are filtered
- command line options that affect speed/sensitivity
- mapping score and base quality
- module for paired end reads
- command line examples

SSAHA k-tuple hashing

SSAHA2 memory requirements

Example: human genome

ssaha2 -kmer 13 -skip 2

ssaha2 -kmer 12 -skip 1

head: 537 MB, body: 6 GB head: 134 MB, body: 12 GB

Identify potentially matching segments (1)

- sort seeds by shift (max. hit list length: 4×10^6) \rightarrow bottle-neck for large genomes in terms of speed
- join seeds of similar shift -> potentially matching segments command line options:
- -seed <n>: require a minimum number of s seeds for a potentially matching segment to register ($n \ge 2$)
- -cut <c> : Disregard k-tuples with more than c hits across the genome (default: $c = 10^4$)

k-tuple hit list (seeds):

query q	subject s	shift (s-q)
2	21	19
12	33	21
1	56	55
8	73	65
11	86	75
2	103	101
10	111	101
12	113	101
7	204	197
1	311	310
5	342	337
13	401	388
3	396	393
5	413	418
2	489	487
4	0	
6	0	
9	0	

Identify potentially matching segments (2)

Implementation feature for increased speed:

- only register a potentially matching segment
 - if the number of seeds is not less than *m* below the *current* maximum

 option -edge <e> is obsolete as of version 2.0

sangel

8

abi

500

Important SSAHA2 command line options

option	range	default	description
-rtype <typ></typ>	[solexa, 454, abi]	abi	Tunes algorithm for read-types
-kmer <k></k>	2 < k < 16	13	k-tuple length
-skip <s></s>	s ≥ 1	[1,3,k]	distance between successive k- tuples in the genomic sequence
-seed <n></n>	n ≥ 2	[2,2,5]	Minimum number of seeds for a potentially matching segment
-cut <c></c>	c ≥ 2	1×10 ⁴	Threshold in the number of hits of a k-tuple across the genome
-depth <d></d>	d ≥ 500	500	Submit at most the <i>d</i> segments with the highest number of seeds to Smith-Waterman

SSAHA2 mapping score

The uniqueness of a match is assessed by the difference between the two matches with the highest Smith-Waterman alignment scores S_{max} and S_{max2} :

$$\delta = (S_{max} - S_{max2})\frac{300}{R}$$

where R is the read length. If there are multiple best matches ($\delta = 0$), the Smith-Waterman score of the match with the lowest base quality averaged over the mismatch positions is incremented by 1 ($\delta' = 300/R$) The mapping score S_{map} is capped at a value of 50:

$$S_{map} = \begin{cases} \delta : \delta \leq 50 \\ 50 : \delta > 50 \end{cases}$$

i.e. $0 \le S_{map} \le 50$ with $S_{map} = 0$ indicating multiple matches with identical Smith-Waterman scores (ambiguous mapping).

cigar::50 MAL2_000000213299.F 1 36 + MAL2 213252 213287 + 30 M 36

Module for paired-end reads

Command line option: -pair <a,b>

i) determine which of the mates gives rise to fewer k-tuple hits (less abundant)
ii) get matches with the best Smith-Waterman scores for that mate
iii) look in the distance band [a,b] around those positions for matches of the other, more abundant, mate

iv) Report both mates if the more abundant mate maps uniquely in the distance band [a,b] around the matching positions of the less abundant mate.

Module for paired-end reads

Command line options: *-pair <a,b> [-outfile <filnam>]*

iv) Report both mates if the more abundant mate maps uniquely in the distance band [a,b] around the matching positions of the less abundant mate.

Otherwise:

va) if both mates map uniquely (mapping score > 30) outside the specified distance range → report pair to a separate file (specified with *-outfile <filnam*>)
vb) if only one mate maps uniquely, report this single mate

Command line examples

> ssaha2 -rtype solexa -pair 180,220 -kmer 12 -skip 2 -output cigar -align 1 genome.fa paired_end_reads.fq

Or build hash table on big memory machine > *ssaha2Build -kmer 13 -skip 2 -save htab genome.fa* and run ssaha2 with reduced memory usage (farm): > *ssaha2 -rtype solexa -pair 50,600 -outfile pairs.out -disk 1 -output cigar -save htab paired end reads.fq*

The SSAHA2 package

Binaries available from: http://www.sanger.ac.uk/Software/analysis/SSAHA2

Acknowledgements

Zemin Ning

Tony Cox

Yong Gu

Adam Spargo

Ben Blackburne

Current SSAHA2 performance with short reads

