
Sequence Alignment - NGS

Zemin Ning

The Wellcome Trust Sanger Institute

Outline of the Talk:

 Global and Local Alignment

 Alignment methods

 Alignment tools: BWA and Smalt

 Comparison of the results

 Data visualisation

Biological Motivation

Why We Need Sequence Alignment

 Inference of Homology

– Two genes are homologous if they share a
common evolutionary history.

– Evolutionary history can tell us a lot about
properties of a given gene

– Homology can be inferred from similarity
between the genes

 Variation Detection – SNP, indel, CNV

Sequence Alignment

Input: two sequences S1, S2 over the same alphabet
Output: two sequences S’1, S’2 of equal length
 (S’1, S’2 are S1, S2 with possibly additional gaps)

Example:
 S1= GCGCATGGATTGAGCGA

 S2= TGCGCCATTGATGACC

 A possible alignment:
S’1= -GCGC-ATGGATTGAGCGA

S’2= TGCGCCATTGAT-GACC--

Goal: How similar are two sequences S1 and S2

Global Alignment:

Input: two sequences S1, S2 over the same alphabet
Output: two sequences S’1, S’2 of equal length
 (S’1, S’2 are substrings of S1, S2 with possibly additional gaps)

Example:
 S1= GCGCATGGATTGAGCGA

 S2= TGCGCCATTGATGACC

 A possible alignment:
S’1= ATTGA-G

S’2= ATTGATG

Goal: Find the pair of substrings in two input

sequences which have the highest similarity

Local Alignment:

Sequence Alignment (cont)

Global vs. Local Alignment

 The Global Alignment Problem tries to find

the longest path between vertices (0,0)

and (n,m) in the edit graph.

 The Local Alignment Problem tries to find

the longest path among paths between

arbitrary vertices (i,j) and (i’, j’) in the edit

graph.

Global vs. Local Alignment (cont’d)

• Global Alignment

• Local Alignment—betten alignment to find

conserved segment

 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
 | || | || | | | ||| || | | | | |||| |
 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 tccCAGTTATGTCAGgggacacgagcatgcagagac

 ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Global alignment

Local alignment

Compute a ―mini‖

Global Alignment to

get Local

Sequence 1

Sequence 2

• Dot matrix analysis

• The dynamic programming (DP) algorithm

• Needleman-Wunsch Algorithm

• Smith-Waterman Algorithm

• Burrows-Wheeler Index (BWA, Bowtie, SOAP2, etc)

• Hash table based algorithm (ssaha2, smalt, novoAlign, etc)

Methods of DNA Sequence Alignment

• A dot matrix analysis is a method for comparing two sequences

to look for possible alignment (Gibbs and McIntyre 1970)

• One sequence (A) is listed across the top of the matrix and the

other (B) is listed down the left side

• Starting from the first character in B, one moves across the page

keeping in the first row and placing a dot in many column where

the character in A is the same

• The process is continued until all possible comparisons between

A and B are made

• Any region of similarity is revealed by a diagonal row of dots

• Isolated dots not on diagonal represent random matches

Dot Matrix Analysis

Dot view – Indels

Dot view – Tandem repeats

Smith-Waterman Algorithm

 Only works effectively

when gap penalties are

used

 In example shown

– match = +1

– mismatch = -1/3

– gap = -1+1/3k (k=extent

of gap)

 Start with all cell values = 0

 Looks in subcolumn and

subrow shown and in direct

diagonal for a score that is

the highest when you take

alignment score or gap

penalty into account

C A G C C T C G C T T A G

A 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

A 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7

T 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7

G 0.0 0.0 1.0 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0

C 1.0 0.0 0.0 2.0 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3

C 1.0 0.7 0.0 1.0 3.0 1.7 ?

A

T

T

G

A

C

G

G

Hij=max{Hi-1, j-1 +s(ai,bj), max{Hi-k,j -Wk}, max{Hi, j-l -Wl}, 0}

A--GCC

A TGCC

Local alignment

score H = 3.0

Mapping Score in Short Read Alignment

 Read mapping score is used to assess the repetitive feature of the read in

the genome. With a maximum mapping score 50, we have:

 Smax - maximum alignment score (smith-waterman) of the hits on

genome; Smax2 - second best alignment score of the hits on genome; Say

you have one read of 30 bases which has a few hits on the genome: Best

hit: exact match with Smax 30; Second best hit: one base mismatch with

Smax2 29. The mapping score for this read is Smap = 10;

Read

Reference

29 21 30 25 14 27

50

)(*10 2maxmax SS
Smap




)50(

)50(





map

map

Sif

Sif

Short Read Alignment Tools

Bfast

BioScope

Bowtie

BWA

CLC bio

CloudBurst

Eland/Eland2

GenomeMapper

GnuMap

Karma

MAQ

MOM

Mosaik

MrFAST/MrsFAST

NovoAlign

PASS

PerM

RazerS

RMAP

Smalt

SSAHA2

Segemehl

SeqMap

SHRiMP

Slider/SliderII

SOAP/SOAP2

Srprism

Stampy

vmatch

ZOOM

......

Overview of the BWA algorithm

 Based on FM-index (Burrows-Wheeler Transform plus

auxilliary data structures) which enables fast exact

matching.

 Short-read algorithm: alter the read sequence such that it

matches the reference exactly.

 Long-read algorithm (BWA-SW): sample reference

subsequences and perform Smith-Waterman alignment

between the subsequences and the read.

 Work for Illumina and SOLiD single-end (SE) and

paired-end (PE) reads; new component BWA-SW for

454/Sanger SE reads.

 Fast and moderate memory (<4GB)

 SAM output by default

 Gapped alignment for both SE and PE reads

 Effective pairing to achieve high alignment accuracy;

suboptimal hits considered in pairing.

 Non-unique read is placed randomly with a mapping

quality 0; all hits can be outputted in a concise format.

 The default configuration works for most typical input

 -Automatically adjust parameters based on read

lengths and error rates.

 -Estimate the insert size distribution

Key Features

 Input: ref.fa, read1.fq, read2.fq and long-read.fq

 Step 1: Index the genome (3 CPU hours for the human

genome):

 bwa index -a is ref.fa

 Step 2a: Generate alignments in the suffix array coordinate:

 bwa aln ref.fa read1.fq > read1.sai

 bwa aln ref.fa read2.fq > read2.sai

 Step 3a: Generate alignments in the SAM format:

 bwa sampe ref.fa read1.sai read2.sai read1.fq read2.fq >

aln.sam

 Step 4a: Get multiple hits:

 bwa samse -n 100 ref.fa read1.sai read1.fq

 Step 2b: Use BWA-SW for long reads:

 bwa bwasw ref.fa long-read.fq > aln-long.sam

Running BWA

SMALT Algorithm

ATGGCGTGCAGT

 TGGCGTGCAGTC

 GGCGTGCAGTCC

 GCGTGCAGTCCA

 CGTGCAGTCCAT

 ATGGCGTGCAGTCCATGTTCGGATCA

Overlap hashing

 W = N-k+1

(k = 12)

Non-overlap Hashing v Overlap Hashing

Non-overlap Hashing

W = N/k

ATGGGCAGATGT

 CCATGTTCGGAT

 CATTACGTAAGC

 ATGGCGTGCAGTCCATGTTCGGATCATTACGTAAGC

Sequence Representation

Sequence S: (s1s2, …, si, …, sm) i =1,2, …, m

K-tuple: (sisi+1...si+k-1)

Using two binary digits for each base, we may have the following

representations:

“A” =00; “C” = 01; “G” = 10; “T” = 11

For any of the m/k no-overlapping k-tuples in the sequence, an

integer may be used to represent the k-tuple in a unique way




 
k

i

i

i EE
2

1

2k

max

1 1-2 with 2

where i = 0 or 1, depending on the value of the sequence base

and Emax is the maximum value of the possible E values.

E

k-tuple

Ni

Indices and Offsets

 0

AA

1

2, 19

 1

AC

3

1, 9

2, 5

2, 11

 2

AG

2

1, 15

2, 35

 3

AT

2

2, 13

3, 3

 4

CA

7

2, 3

2, 9

2, 21

2, 27

2, 33

3, 21

3, 23

 5

CC

4

1, 21

2, 31

3, 5

3, 7

 6

CG

1

1, 5

 7

CT

6

1, 23

2, 39

2, 43

3, 13

3, 15

3, 17

 8

GA

4

1, 3

1, 17

2, 15

2, 25

 9

GC

0

 10

GG

5

1, 25

1, 31

2, 17

2, 29

3, 1

 11

GT

6

1, 1

1, 27

1, 29

2, 1

2, 37

3, 19

 12

TA

1

3, 25

 13

TC

6

1, 7

1, 11

1, 19

2, 23

2, 41

3, 11

 14

TG

3

1, 13

2, 7

3, 9

 15

TT

S1=(GTGACGTCACTCTGAGGATCCCCTGGGTGTGG)

S2=(GTCAACTGCAACATGAGGAACATCGACAGGCCCAAGGTCTTCCT)

S3=(GGATCCCCTGTCCTCTCTGTCACATA)

Hash Table: A 2-tuple hashing table of S1, S2 and S3

Query sequence: Sq = (TGCAACAT)

E

k-tuple

Ni

Indices and Offsets

 0

AA

1

2, 19

 1

AC

3

1, 9

2, 5

2, 11

 2

AG

2

1, 15

2, 35

 3

AT

2

2, 13

3, 3

 4

CA

7

2, 3

2, 9

2, 21

2, 27

2, 33

3, 21

3, 23

 5

CC

4

1, 21

2, 31

3, 5

3, 7

 6

CG

1

1, 5

 7

CT

6

1, 23

2, 39

2, 43

3, 13

3, 15

3, 17

 8

GA

4

1, 3

1, 17

2, 15

2, 25

 9

GC

0

 10

GG

5

1, 25

1, 31

2, 17

2, 29

3, 1

 11

GT

6

1, 1

1, 27

1, 29

2, 1

2, 37

3, 19

 12

TA

1

3, 25

 13

TC

6

1, 7

1, 11

1, 19

2, 23

2, 41

3, 11

 14

TG

3

1, 13

2, 7

3, 9

 15

TT

k-tuples

f(t)

F(t)

-(t-1)

Fs(t)

 TG

1, 13

1, 13

0

1, 5

2, 7

2, 7

0

1, 13

3, 9

3, 9

0

2, -2

 GC

-1

 CA

2, 3

2, 1

-2

2, 1

2, 9

2, 7

-2

2, 1

2, 21

2, 19

-2

2, 4

2, 27

2, 25

-2

2, 7

2, 33

2, 31

-2

2, 7

3, 21

3, 19

-2

2, 7

3, 23

3, 21

-2

2, 7

 AA

2, 19

2, 16

-3

2, 16

 AC

1, 9

1, 5

-4

2, 16

2, 5

2, 1

-4

2, 19

2, 11

2, 7

-4

2, 21

 CA

2, 3

2, -2

-5

2, 25

2, 9

2, 4

-5

2, 28

2, 21

2, 16

-5

2, 31

2, 27

2, 22

-5

3, -3

2, 33

2, 28

-5

3, 9

3, 21

3, 16

-5

3, 16

3, 23

3, 18

-5

3, 18

 AT

2, 13

2, 7

-6

3, 19

3, 3

3, -3

-6

3, 21

Array of index and offset data Sq = (TGCAACAT)

Query sequence:

 Data files: genome_ref.fa, read1.fastq, read2.fastq

 Hash the reference genome:

 smalt index –k 13 –s 6 hash_ref genome_ref.fa

 Generate alignments in the SAM format:

 smalt map -i 800 –j 20 –o aln.sam -f samsoft hash_ref

read1.fastq read2.fq

 Where to download:

 http://www.sanger.ac.uk/resources/software/smalt/

Running SMALT

http://www.sanger.ac.uk/resources/software/smalt/

Burrows-Wheeler vs Hashing

seed (28 bp)

hi-half lo-half

seed (32 bp, optional)

5'

seed (28 bp) seed (28 bp)

3'

5' 3'

BOWTIE/TOPHAT

BWA

depth-1st by default, breadth-1st slower

no indels

breadth first,

upper bound on edit distance, e.g. max 5 mismatches in 100bp read. Can

deal with indels.

5' 3' SMALT/SSAHA2

Exact matching k-segment (1 kmer) required.

Partial alignments (indels, splice junctions)

• Strengths and weaknesses (trends)
– Burrows-Wheeler, e.g. bwa, bowtie

– Fast, esp. (multiple) exact matches

– High sensitivity at repetitive regions

– less robust at high genomic variation

– Hashing (overlapping k-mer words, e.g SMALT/SSAHA2, Stampy)

– Slower (more memory hungry)

– Less sensitivity at repetitive regions

– tolerate high genomic variation

– partial alignments (junction reads) easier

– Flexible (multiple sequencing platforms)

Burrows-Wheeler vs Hashing

Performance Assessment
on simulated reads

SSAHA2 SMALT BWA

variation 1% 2% 5% 1% 2% 5% 1% 2% 5%

0.34 0.22 0.18 0.71 0.60 0.47 1.35 0.74 0.63

memory [GB] 3.8 3.8 3.8 3.3 3.3 3.3 2.3 2.3 2.3

mapped [%] 97.3 97.2 96.1 97.1 97.0 96.5 95.6 89.1 48.1

0.09 0.16 0.49 0.08 0.14 0.44 0.09 0.17 0.41

rate [106 pairs/h]

error [%]

human genome

105 read pairs 2 x 100 bp (insert 500)

20% of variations indels (max. 10)

Performance of mappers
(genome re-sequencing)

Simulated for human genome:

4x106 x 100 bp single reads

1% variation of which 20% indels

14 bp maximum indel length

1 2 3 4

0

5

10

indel length

Sensitivity Assessment
~ 2% genomic variation

Reads:

 M. spretus

 whole genome shotgun

 2 x 108 bp, insert 250 bp

Reference:

 M. musculus

 NCBI build 37

• independently mapped reads

• Count discordant pairs as erroneous

mappings

Sensitivity Assessment
RNA-Seq data

Reads:

 M. musculus C57B6

 RNA-Seq data

 2 x 76 bp, insert 320 bp

Reference:

 M. musculus

 NCBI build 37

• independently mapped reads

• count discordant pairs (> 10 kbp

apart) as erroneous mappings

SMALT Workflow

Illumina/454/PacBio

Reads
Reference

SNPs/Indeks

samtools

SMALT/ssaha2

Gap5

SAM/BAM File

Read File Format – fastq or fasta

PacBio Read Alignment

Reference Guided 3D7 Assembly using PacBio Reads
Total Bases: 20.5 Mb; N50: 1,368 bp

De novo Assembly using Illumina Reads
Total Bases: 23.6 Mb

ContigN50: 8 Kb

Supercontig N50: 13.3 Kb

Acknowledgements:

 Jim Mullikin

 Hannes Ponstingl

 Adam Spargo

 Tony Cox (Illumina)

 Tony Cox (Sanger)

 James Bonfield

 Heng Li

