
Sequence Alignment - NGS

Zemin Ning

The Wellcome Trust Sanger Institute

Outline of the Talk:

 Global and Local Alignment

 Alignment methods

 Alignment tools: BWA and Smalt

 Comparison of the results

 Data visualisation

Biological Motivation

Why We Need Sequence Alignment

 Inference of Homology

– Two genes are homologous if they share a
common evolutionary history.

– Evolutionary history can tell us a lot about
properties of a given gene

– Homology can be inferred from similarity
between the genes

 Variation Detection – SNP, indel, CNV

Sequence Alignment

Input: two sequences S1, S2 over the same alphabet
Output: two sequences S’1, S’2 of equal length
 (S’1, S’2 are S1, S2 with possibly additional gaps)

Example:
 S1= GCGCATGGATTGAGCGA

 S2= TGCGCCATTGATGACC

 A possible alignment:
S’1= -GCGC-ATGGATTGAGCGA

S’2= TGCGCCATTGAT-GACC--

Goal: How similar are two sequences S1 and S2

Global Alignment:

Input: two sequences S1, S2 over the same alphabet
Output: two sequences S’1, S’2 of equal length
 (S’1, S’2 are substrings of S1, S2 with possibly additional gaps)

Example:
 S1= GCGCATGGATTGAGCGA

 S2= TGCGCCATTGATGACC

 A possible alignment:
S’1= ATTGA-G

S’2= ATTGATG

Goal: Find the pair of substrings in two input

sequences which have the highest similarity

Local Alignment:

Sequence Alignment (cont)

Global vs. Local Alignment

 The Global Alignment Problem tries to find

the longest path between vertices (0,0)

and (n,m) in the edit graph.

 The Local Alignment Problem tries to find

the longest path among paths between

arbitrary vertices (i,j) and (i’, j’) in the edit

graph.

Global vs. Local Alignment (cont’d)

• Global Alignment

• Local Alignment—betten alignment to find

conserved segment

 --T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
 | || | || | | | ||| || | | | | |||| |
 AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

 tccCAGTTATGTCAGgggacacgagcatgcagagac

 ||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Local Alignment: Example

Global alignment

Local alignment

Compute a ―mini‖

Global Alignment to

get Local

Sequence 1

Sequence 2

• Dot matrix analysis

• The dynamic programming (DP) algorithm

• Needleman-Wunsch Algorithm

• Smith-Waterman Algorithm

• Burrows-Wheeler Index (BWA, Bowtie, SOAP2, etc)

• Hash table based algorithm (ssaha2, smalt, novoAlign, etc)

Methods of DNA Sequence Alignment

• A dot matrix analysis is a method for comparing two sequences

to look for possible alignment (Gibbs and McIntyre 1970)

• One sequence (A) is listed across the top of the matrix and the

other (B) is listed down the left side

• Starting from the first character in B, one moves across the page

keeping in the first row and placing a dot in many column where

the character in A is the same

• The process is continued until all possible comparisons between

A and B are made

• Any region of similarity is revealed by a diagonal row of dots

• Isolated dots not on diagonal represent random matches

Dot Matrix Analysis

Dot view – Indels

Dot view – Tandem repeats

Smith-Waterman Algorithm

 Only works effectively

when gap penalties are

used

 In example shown

– match = +1

– mismatch = -1/3

– gap = -1+1/3k (k=extent

of gap)

 Start with all cell values = 0

 Looks in subcolumn and

subrow shown and in direct

diagonal for a score that is

the highest when you take

alignment score or gap

penalty into account

C A G C C T C G C T T A G

A 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

A 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7

T 0.0 0.0 0.8 0.3 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7

G 0.0 0.0 1.0 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0

C 1.0 0.0 0.0 2.0 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3

C 1.0 0.7 0.0 1.0 3.0 1.7 ?

A

T

T

G

A

C

G

G

Hij=max{Hi-1, j-1 +s(ai,bj), max{Hi-k,j -Wk}, max{Hi, j-l -Wl}, 0}

A--GCC

A TGCC

Local alignment

score H = 3.0

Mapping Score in Short Read Alignment

 Read mapping score is used to assess the repetitive feature of the read in

the genome. With a maximum mapping score 50, we have:

 Smax - maximum alignment score (smith-waterman) of the hits on

genome; Smax2 - second best alignment score of the hits on genome; Say

you have one read of 30 bases which has a few hits on the genome: Best

hit: exact match with Smax 30; Second best hit: one base mismatch with

Smax2 29. The mapping score for this read is Smap = 10;

Read

Reference

29 21 30 25 14 27

50

)(*10 2maxmax SS
Smap

)50(

)50(

map

map

Sif

Sif

Short Read Alignment Tools

Bfast

BioScope

Bowtie

BWA

CLC bio

CloudBurst

Eland/Eland2

GenomeMapper

GnuMap

Karma

MAQ

MOM

Mosaik

MrFAST/MrsFAST

NovoAlign

PASS

PerM

RazerS

RMAP

Smalt

SSAHA2

Segemehl

SeqMap

SHRiMP

Slider/SliderII

SOAP/SOAP2

Srprism

Stampy

vmatch

ZOOM

......

Overview of the BWA algorithm

 Based on FM-index (Burrows-Wheeler Transform plus

auxilliary data structures) which enables fast exact

matching.

 Short-read algorithm: alter the read sequence such that it

matches the reference exactly.

 Long-read algorithm (BWA-SW): sample reference

subsequences and perform Smith-Waterman alignment

between the subsequences and the read.

 Work for Illumina and SOLiD single-end (SE) and

paired-end (PE) reads; new component BWA-SW for

454/Sanger SE reads.

 Fast and moderate memory (<4GB)

 SAM output by default

 Gapped alignment for both SE and PE reads

 Effective pairing to achieve high alignment accuracy;

suboptimal hits considered in pairing.

 Non-unique read is placed randomly with a mapping

quality 0; all hits can be outputted in a concise format.

 The default configuration works for most typical input

 -Automatically adjust parameters based on read

lengths and error rates.

 -Estimate the insert size distribution

Key Features

 Input: ref.fa, read1.fq, read2.fq and long-read.fq

 Step 1: Index the genome (3 CPU hours for the human

genome):

 bwa index -a is ref.fa

 Step 2a: Generate alignments in the suffix array coordinate:

 bwa aln ref.fa read1.fq > read1.sai

 bwa aln ref.fa read2.fq > read2.sai

 Step 3a: Generate alignments in the SAM format:

 bwa sampe ref.fa read1.sai read2.sai read1.fq read2.fq >

aln.sam

 Step 4a: Get multiple hits:

 bwa samse -n 100 ref.fa read1.sai read1.fq

 Step 2b: Use BWA-SW for long reads:

 bwa bwasw ref.fa long-read.fq > aln-long.sam

Running BWA

SMALT Algorithm

ATGGCGTGCAGT

 TGGCGTGCAGTC

 GGCGTGCAGTCC

 GCGTGCAGTCCA

 CGTGCAGTCCAT

 ATGGCGTGCAGTCCATGTTCGGATCA

Overlap hashing

 W = N-k+1

(k = 12)

Non-overlap Hashing v Overlap Hashing

Non-overlap Hashing

W = N/k

ATGGGCAGATGT

 CCATGTTCGGAT

 CATTACGTAAGC

 ATGGCGTGCAGTCCATGTTCGGATCATTACGTAAGC

Sequence Representation

Sequence S: (s1s2, …, si, …, sm) i =1,2, …, m

K-tuple: (sisi+1...si+k-1)

Using two binary digits for each base, we may have the following

representations:

“A” =00; “C” = 01; “G” = 10; “T” = 11

For any of the m/k no-overlapping k-tuples in the sequence, an

integer may be used to represent the k-tuple in a unique way

k

i

i

i EE
2

1

2k

max

1 1-2 with 2

where i = 0 or 1, depending on the value of the sequence base

and Emax is the maximum value of the possible E values.

E

k-tuple

Ni

Indices and Offsets

 0

AA

1

2, 19

 1

AC

3

1, 9

2, 5

2, 11

 2

AG

2

1, 15

2, 35

 3

AT

2

2, 13

3, 3

 4

CA

7

2, 3

2, 9

2, 21

2, 27

2, 33

3, 21

3, 23

 5

CC

4

1, 21

2, 31

3, 5

3, 7

 6

CG

1

1, 5

 7

CT

6

1, 23

2, 39

2, 43

3, 13

3, 15

3, 17

 8

GA

4

1, 3

1, 17

2, 15

2, 25

 9

GC

0

 10

GG

5

1, 25

1, 31

2, 17

2, 29

3, 1

 11

GT

6

1, 1

1, 27

1, 29

2, 1

2, 37

3, 19

 12

TA

1

3, 25

 13

TC

6

1, 7

1, 11

1, 19

2, 23

2, 41

3, 11

 14

TG

3

1, 13

2, 7

3, 9

 15

TT

S1=(GTGACGTCACTCTGAGGATCCCCTGGGTGTGG)

S2=(GTCAACTGCAACATGAGGAACATCGACAGGCCCAAGGTCTTCCT)

S3=(GGATCCCCTGTCCTCTCTGTCACATA)

Hash Table: A 2-tuple hashing table of S1, S2 and S3

Query sequence: Sq = (TGCAACAT)

E

k-tuple

Ni

Indices and Offsets

 0

AA

1

2, 19

 1

AC

3

1, 9

2, 5

2, 11

 2

AG

2

1, 15

2, 35

 3

AT

2

2, 13

3, 3

 4

CA

7

2, 3

2, 9

2, 21

2, 27

2, 33

3, 21

3, 23

 5

CC

4

1, 21

2, 31

3, 5

3, 7

 6

CG

1

1, 5

 7

CT

6

1, 23

2, 39

2, 43

3, 13

3, 15

3, 17

 8

GA

4

1, 3

1, 17

2, 15

2, 25

 9

GC

0

 10

GG

5

1, 25

1, 31

2, 17

2, 29

3, 1

 11

GT

6

1, 1

1, 27

1, 29

2, 1

2, 37

3, 19

 12

TA

1

3, 25

 13

TC

6

1, 7

1, 11

1, 19

2, 23

2, 41

3, 11

 14

TG

3

1, 13

2, 7

3, 9

 15

TT

k-tuples

f(t)

F(t)

-(t-1)

Fs(t)

 TG

1, 13

1, 13

0

1, 5

2, 7

2, 7

0

1, 13

3, 9

3, 9

0

2, -2

 GC

-1

 CA

2, 3

2, 1

-2

2, 1

2, 9

2, 7

-2

2, 1

2, 21

2, 19

-2

2, 4

2, 27

2, 25

-2

2, 7

2, 33

2, 31

-2

2, 7

3, 21

3, 19

-2

2, 7

3, 23

3, 21

-2

2, 7

 AA

2, 19

2, 16

-3

2, 16

 AC

1, 9

1, 5

-4

2, 16

2, 5

2, 1

-4

2, 19

2, 11

2, 7

-4

2, 21

 CA

2, 3

2, -2

-5

2, 25

2, 9

2, 4

-5

2, 28

2, 21

2, 16

-5

2, 31

2, 27

2, 22

-5

3, -3

2, 33

2, 28

-5

3, 9

3, 21

3, 16

-5

3, 16

3, 23

3, 18

-5

3, 18

 AT

2, 13

2, 7

-6

3, 19

3, 3

3, -3

-6

3, 21

Array of index and offset data Sq = (TGCAACAT)

Query sequence:

 Data files: genome_ref.fa, read1.fastq, read2.fastq

 Hash the reference genome:

 smalt index –k 13 –s 6 hash_ref genome_ref.fa

 Generate alignments in the SAM format:

 smalt map -i 800 –j 20 –o aln.sam -f samsoft hash_ref

read1.fastq read2.fq

 Where to download:

 http://www.sanger.ac.uk/resources/software/smalt/

Running SMALT

http://www.sanger.ac.uk/resources/software/smalt/

Burrows-Wheeler vs Hashing

seed (28 bp)

hi-half lo-half

seed (32 bp, optional)

5'

seed (28 bp) seed (28 bp)

3'

5' 3'

BOWTIE/TOPHAT

BWA

depth-1st by default, breadth-1st slower

no indels

breadth first,

upper bound on edit distance, e.g. max 5 mismatches in 100bp read. Can

deal with indels.

5' 3' SMALT/SSAHA2

Exact matching k-segment (1 kmer) required.

Partial alignments (indels, splice junctions)

• Strengths and weaknesses (trends)
– Burrows-Wheeler, e.g. bwa, bowtie

– Fast, esp. (multiple) exact matches

– High sensitivity at repetitive regions

– less robust at high genomic variation

– Hashing (overlapping k-mer words, e.g SMALT/SSAHA2, Stampy)

– Slower (more memory hungry)

– Less sensitivity at repetitive regions

– tolerate high genomic variation

– partial alignments (junction reads) easier

– Flexible (multiple sequencing platforms)

Burrows-Wheeler vs Hashing

Performance Assessment
on simulated reads

SSAHA2 SMALT BWA

variation 1% 2% 5% 1% 2% 5% 1% 2% 5%

0.34 0.22 0.18 0.71 0.60 0.47 1.35 0.74 0.63

memory [GB] 3.8 3.8 3.8 3.3 3.3 3.3 2.3 2.3 2.3

mapped [%] 97.3 97.2 96.1 97.1 97.0 96.5 95.6 89.1 48.1

0.09 0.16 0.49 0.08 0.14 0.44 0.09 0.17 0.41

rate [106 pairs/h]

error [%]

human genome

105 read pairs 2 x 100 bp (insert 500)

20% of variations indels (max. 10)

Performance of mappers
(genome re-sequencing)

Simulated for human genome:

4x106 x 100 bp single reads

1% variation of which 20% indels

14 bp maximum indel length

1 2 3 4

0

5

10

indel length

Sensitivity Assessment
~ 2% genomic variation

Reads:

 M. spretus

 whole genome shotgun

 2 x 108 bp, insert 250 bp

Reference:

 M. musculus

 NCBI build 37

• independently mapped reads

• Count discordant pairs as erroneous

mappings

Sensitivity Assessment
RNA-Seq data

Reads:

 M. musculus C57B6

 RNA-Seq data

 2 x 76 bp, insert 320 bp

Reference:

 M. musculus

 NCBI build 37

• independently mapped reads

• count discordant pairs (> 10 kbp

apart) as erroneous mappings

SMALT Workflow

Illumina/454/PacBio

Reads
Reference

SNPs/Indeks

samtools

SMALT/ssaha2

Gap5

SAM/BAM File

Read File Format – fastq or fasta

PacBio Read Alignment

Reference Guided 3D7 Assembly using PacBio Reads
Total Bases: 20.5 Mb; N50: 1,368 bp

De novo Assembly using Illumina Reads
Total Bases: 23.6 Mb

ContigN50: 8 Kb

Supercontig N50: 13.3 Kb

Acknowledgements:

 Jim Mullikin

 Hannes Ponstingl

 Adam Spargo

 Tony Cox (Illumina)

 Tony Cox (Sanger)

 James Bonfield

 Heng Li

